Please wait a minute...
材料导报  2021, Vol. 35 Issue (21): 21022-21027    https://doi.org/10.11896/cldb.21060166
  环境催化材料 |
有机氯硅烷高沸物催化裂解材料研究进展
韦岳长, 赖可溱, 熊靖, 李远锋, 吴彤彤
中国石油大学(北京)理学院重质油国家重点实验室,北京 102249
Research on Advances of Catalytic Cracking Materials for Organochlorosilane High-boiling Residues
WEI Yuechang, LAI Kezhen, XIONG Jing, LI Yuanfeng, WU Tongtong
State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
下载:  全 文 ( PDF ) ( 2341KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 有机硅材料具有防潮、耐腐蚀、耐高低温、无毒无味以及生理惰性等优异的性能,已被广泛应用于各个领域。有机硅单体的生产过程会产生约7%的副产物,以成分复杂及工业价值低的有机氯硅烷高沸物为主,因其易燃、有刺激性气味和具有强的腐蚀性,对环境及人体健康有重大危害。随着有机硅单体产能日益增加,有机氯硅烷高沸物的有效利用成为一个亟待解决的难题。高沸物的再利用主要是通过制备有机硅下游产品和裂解制备有机硅单体来实现,而后者需要在催化剂存在的条件下将高沸物中含有的Si-Si键和Si-C-Si断裂,并选用合适的封端剂将其转化成甲基氯硅烷单体。目前,路易斯酸、有机胺、过渡金属元素、活性炭和分子筛等是催化裂解的主要催化剂,各自工艺的操作条件及催化性能迥异。高沸物的裂解率最高可以达到99%以上,但由于生产工艺复杂、操作成本高等问题的限制,严重阻碍了其工业推广与应用。本文归纳了有机氯硅烷高沸物催化裂解材料的研究进展,分别对铝基化合物、有机胺或季铵盐、过渡金属及其化合物、分子筛或活性炭和金属磷酸盐等催化剂展开介绍,概括了以上各类催化剂的研究现状及面临的问题,并对其发展前景进行了合理的分析与讨论,以期为制备出高效、可工业化的有机氯硅烷高沸物裂解催化剂提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韦岳长
赖可溱
熊靖
李远锋
吴彤彤
关键词:  有机氯硅烷高沸物  催化裂解  催化剂  工业化    
Abstract: Organosiliconmaterials are widely applied in various fields due to their excellent properties, including moisture-proof, corrosion resistance, high and low temperature resistance, non-toxic and physiological inertia. However, the production process of organosilicon monomers will produce about 7% by-products, and they are mainly composed of organochlorosilane high-boiling residues with complex composition and low commercial value. Inflammable, pungent and strong corrosive organochlorosilane high-boiling residues are greatly harmful to our health and environment. With the increasing productivity of organosilicon monomer, the efficient utilization of organochlorosilane high-boiling residues has become a diffcult problem to be solved urgently. The recycle of organochlorosilane high-boiling residues is mainly achieved through the synthesis of organosilicon downstream products and organosilicon monomers by catalytic cracking method. The catalytic cracking process needs to break the Si-Si bond and Si-C-Si bond in the presence of catalysts and convert high-boiling residues into methylchlorosilane monomers by selecting a suitable blocking reagent. Lewis acids, organic amines, transition metal elements, activated carbon and molecular sieves are main catalysts for catalytic cracking, and their operating conditions and catalytic performance are different. The cracking ratio of organochlorosilane high-boiling residues can reach more than 99%. Nevertheless, the high operation cost and complex production technology limit the further industrial application and popularization. This review article offers a retrospection of research works with respect to the catalytic cracking materials for organochlorosilane high-boi-ling residues, and the materials include aluminum-based compounds, organic amines or quaternary ammonium salts, transition metals, molecular sieves or activated carbon and metallic phosphate catalysts. We have summarized the research status and problems of the above catalysts and analyzed the development prospects. It is expected to provide an available summary for development prospect of catalytic cracking industrialization.
Key words:  organochlorosilane high-boiling residues    catalytic cracking    catalyst    industrialization
               出版日期:  2021-11-10      发布日期:  2021-11-30
ZTFLH:  O643.3  
基金资助: 国家重点研发计划(2019YFC1907601)
通讯作者:  weiyc@cup.edu.cn   
作者简介:  韦岳长,中国石油大学(北京)理学院教授、博士研究生导师。2005年和2008年在济南大学分别获得学士学位和硕士学位,2012年7月在中国石油大学(北京)化学工程与技术专业取得博士学位,2015年在美国堪萨斯大学进行博士后研究工作。主要从事石油加工与利用过程中的环境催化研究,在新型高效致霾机动车尾气PM氧化消除催化剂和光催化还原CO2催化剂的设计、制备及其催化机理等方面取得突出的研究成果。近年来,在有环境催化领域发表论文140余篇,包括Energy & Environmental Science、Acs Catalysis、Applied Catalysis B:Environmental、Angewandte Chemie International Edition、Journal of the American Chemical Society和Journal of Catalysis等。
赖可溱,2019年6月毕业于湖南农业大学,获得理学学士学位。现为中国石油大学(北京)理学院硕士研究生,在韦岳长教授的指导下进行研究。目前主要研究领域为氯硅烷高沸物的催化裂解。
引用本文:    
韦岳长, 赖可溱, 熊靖, 李远锋, 吴彤彤. 有机氯硅烷高沸物催化裂解材料研究进展[J]. 材料导报, 2021, 35(21): 21022-21027.
WEI Yuechang, LAI Kezhen, XIONG Jing, LI Yuanfeng, WU Tongtong. Research on Advances of Catalytic Cracking Materials for Organochlorosilane High-boiling Residues. Materials Reports, 2021, 35(21): 21022-21027.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060166  或          http://www.mater-rep.com/CN/Y2021/V35/I21/21022
1 Wang W L, Wang T. Silicone Material, 2008, 22(1), 1 (in Chinese).
王皖林, 王涛. 有机硅材料, 2008, 22(1), 1.
2 Xiong Y F, Zhang N. Chemical Industry and Engineering Progress, 2006, 25(8), 864 (in Chinese).
熊艳锋, 张宁. 化工进展, 2006, 25(8), 864.
3 Zhang K J. Huaxue Shijie (Chemical World), 1996, 37(7), 339 (in Chinese).
章基凯. 化学世界, 1996, 37(7),339.
4 Du Z D. Organosilicon chemistry, Higher Education Press, China, 1990 (in Chinese).
杜作栋. 有机硅化学, 高等教育出版社, 1990.
5 Qi S J, Shi M X. Environmental Protection of Chemical Industry, 2002, 22(1), 28 (in Chinese).
齐姝婧, 石明霞. 化工环保, 2002, 22(1), 28.
6 Bruce R C, Larry H W. U.S. patent, US5922894, 1999.
7 Zhang S, Zhu Z M, Li X M. In: Conference Record of the 2002 CAFSI 11th National Conference on Oganosilicone. Chendu, 2002, pp. 69.
张姝,朱志蒙,李秀梅. 第十一届中国有机硅学术交流会论文集. 成都, 2002, pp. 69.
8 Mohler D, Schenectady, Sellers J E. U.S. patent, US2598435, 1949.
9 Raymond C, Jacques D, Gerard D, et al. Journal of Organometallic Chemistry, 1982, 225, 117.
10 Xu J. China Economist, 2019(6), 290 (in Chinese).
徐健. 经济师, 2019(6), 290.
11 Li Y F, Wu X M. Chemical Industry, 2012(7), 25 (in Chinese).
李玉芳, 伍小明. 化学工业, 2012(7), 25.
12 Yan D Z, Tang C B, Xie Z H. Energy Saving of Non-ferrous Metallurgy, 2010, 26(6), 33 (in Chinese).
严大洲, 汤传斌, 谢正和. 有色冶金节能, 2010, 26(6), 33.
13 Ritzer A, Hajjar A L, Mcentee H R, et al. U.S. patent, US4393229, 1983.
14 Steven K F, Robert F J. U.S. patent, US5629438,1997.
15 Brinson J, Freeburne S, Jarvis R. U.S. patent, US5606090, 1997.
16 福里伯尼 S K, 小·加维斯 R F. 中国专利, CN1172114, 1998.
17 Larry H W. U.S. patent, US6013824, 2000.
18 Bruce R C, Steven K f, Larry H W. U.S. patent, US5907050, 1999.
19 Bluesein B A. U.S. patent, US2717257, 1955.
20 王刚, 王明成, 张德胜, 等. 中国专利, CN1915999, 2007.
21 范宏, 邵月刚, 谭军, 等. 中国专利, CN1634937, 2005.
22 Xiong Y F. New catalysts studies on the catalytic decomposition and disproportionation reactions and mechanism of organosilicon high-boiling residue. Master's Thesis, Nanchang University, China, 2007 (in Chinese).
熊艳锋. 有机硅高沸物催化裂解制单硅烷新型催化剂研究及机理探讨. 硕士学位论文, 南昌大学, 2007.
23 Bluesein B A. U.S. patent, US2709176, 1955.
24 Pachaly B. U.S. patent, US5288892, 1994.
25 Tsukuno A. U.S. patent, US5922893, 1999.
26 Colin P, Debellefon C, Garcia E C, et al. U.S. patent, US6271407, 2001.
27 王刚, 王明成. 中国专利, CN1590389, 2005.
28 王维东, 伊港, 于源, 等. 中国专利, CN101314606, 2008.
29 刘兴宏. 中国专利, CN101418011, 2009.
30 Gao Y. Conversion and comprehensive utilization of organic silicon high-boiling redidues. Master's Thesis, Qingdao University of Science and Technology, China, 2012 (in Chinese).
高扬. 有机硅高沸物的转化与综合利用. 硕士学位论文, 青岛科技大学, 2012.
31 Tan Y P. Study on catalytic cleavage of organosilane high boiling residues into monosilanes by aminopropylated mesoporous silica. Master's Thesis, Nanchang University, China, 2008 (in Chinese).
谭意平. 氨丙基改性介孔分子筛催化裂解有机硅高沸物制单硅烷研究. 硕士学位论文, 南昌大学, 2008.
32 Neale R S. U.S. patent, US4079071, 1977.
33 Atwell W H, Sailinger R M, Seibert R P. U.S. patent, US3639105, 1972.
34 Yoichiro N, Hideyuki M. J.P. patent, JP54-9228, 1979.
35 Yoichiro N, Hideyuki M. J.P. patent, JP54-119417, 1979.
36 Bokeeman G, Cannady J, Ogilvy A. U.S. patent, US5175329, 1992.
37 Kalchauer W, Pachaly B. U.S. patent, US5210255, 1993.
38 Chadwick K, Dhaul A, Halm R, et al. U.S. patent, US5326896, 1994.
39 Chadwick K, Dhaul A, Halm R, et al. U.S. patent, US5292912, 1994.
40 Chadwick K, Dhaul A, Halm R, et al. U.S. patent, US5292909, 1994.
41 张宁, 熊艳锋, 赵建波. 中国专利, CN100999530, 2007.
42 Mautner K, Kohler B, Tamme G. U.S. patent, US6344578, 2002.
43 Gilbert L, Laroze L. U.S. patent, US5627297, 1997.
[1] 王小炼, 杨茂, 刘永辉, 张渝彬, 冯威. 非贵金属催化剂催化硼氢化钠水解制氢的研究进展[J]. 材料导报, 2021, 35(Z1): 21-28.
[2] 刘静, 高正阳, 王杰, 陈霈儒, 杨璐冰. 共掺杂改性TiO2光催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 42-47.
[3] 熊浩林, 韩秀梅, 张晓燕. 分子筛催化剂的发展与展望[J]. 材料导报, 2021, 35(Z1): 137-142.
[4] 刘子林, 林德海, 何发泉, 曹子雄, 王宝冬. 钠化焙烧法回收废SCR催化剂中钒和钨的浸出机理及浸出动力学研究[J]. 材料导报, 2021, 35(Z1): 429-433.
[5] 齐美丽, 李勉拓, 张梦娟, 吴艳玲. 双原子催化剂在电催化领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 481-484.
[6] 王凯, 冯东, 赵文波. 尿素醇解法制备甘油碳酸酯催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 541-547.
[7] 孙晓玲, 弓巧娟, 梁云霞, 巩鹏妮. 新型薄层氮化碳/氧化石墨烯复合材料的制备及在锌-空气电池中的应用[J]. 材料导报, 2021, 35(8): 8001-8006.
[8] 吴彦霞, 梁海龙, 陈鑫, 陈琛, 王献忠, 戴长友, 胡利明, 陈玉峰. 元素(Ce、Co、La、Sn)掺杂对V-Mo/TiO2催化剂脱硝活性的影响[J]. 材料导报, 2021, 35(6): 6020-6027.
[9] 赵晨, 武文粉, 孟子衡, 李会泉, 王晨晔, 王兴瑞. 废SCR脱硝催化剂中砷元素赋存形态与氧化碱浸脱除[J]. 材料导报, 2021, 35(5): 5001-5010.
[10] 芦宝华, 徐宁, 陈晓彤, 谢晓红, 李久明. 硼氢化钠还原烯烃和炔烃的研究进展[J]. 材料导报, 2021, 35(5): 5214-5221.
[11] 梁键星, 李咸伟, 刘道清, 顾嘉南, 孙同华, 贾金平. 协同催化水解羰基硫和二硫化碳的低温催化剂的研究进展[J]. 材料导报, 2021, 35(21): 21028-21036.
[12] 邱晶, 赵明, 王健礼, 陈耀强. 地表臭氧分解用氧化锰研究进展[J]. 材料导报, 2021, 35(21): 21050-21057.
[13] 张中伟, 郭瑞堂, 秦阳, 郭德宇, 潘卫国. 金属有机框架材料在光催化还原CO2中的应用[J]. 材料导报, 2021, 35(21): 21058-21070.
[14] 王成志, 高凤雨, 于庆君, 易红宏, 倪书权, 唐晓龙. 三聚氰胺海绵基高效柔性脱硝催化材料的合成及性能研究[J]. 材料导报, 2021, 35(21): 21079-21084.
[15] 王宝冬, 刘子林, 林德海, 曹子雄, 何发泉, 路光杰, 肖雨亭. 废钒-钛系脱硝催化剂回收利用策略与技术进展[J]. 材料导报, 2021, 35(15): 15001-15010.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed