Please wait a minute...
材料导报  2021, Vol. 35 Issue (15): 15001-15010    https://doi.org/10.11896/cldb.20070110
  材料与可持续发展(四) ———材料再制造与废弃物料资源化利用* |
废钒-钛系脱硝催化剂回收利用策略与技术进展
王宝冬1, 刘子林1, 林德海1, 曹子雄1, 何发泉1, 路光杰2, 肖雨亭3
1 北京低碳清洁能源研究院,北京 102211
2 北京国电龙源环保工程有限公司,北京 100039
3 江苏龙源催化剂有限公司,宜兴 214201
A Review on Recovery and Utilization of Spent V2O5-WO3/TiO2 Catalyst
WANG Baodong1, LIU Zilin1, LIN Dehai1, CAO Zixiong1, HE Faquan1, LU Guangjie2, XIAO Yuting3
1 National Institute of Clean and Low Carbon Energy, Beijing 102211, China
2 Beijing Guodian Longyuan Environmental Protection Engineering Co., Ltd., Beijing 100039, China
3 Jiangsu Longyuan Catalyst Co., Ltd., Yixing 214201, China
下载:  全 文 ( PDF ) ( 4617KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 我国以煤为主的能源结构以及日趋严格的氮氧化物排放标准催生了选择性催化还原法(SCR)脱硝技术的广泛应用,由于化学失活或物理结构破损等导致大量的废弃脱硝催化剂产生,造成严重的环境污染。然而,SCR催化剂的主要成分钒、钨、钛等有价金属具有重要的经济和战略价值。随着SCR催化剂的广泛使用,脱硝领域将面临严峻的环境污染和资源浪费问题。
针对从废SCR催化剂回收TiO2、WO3、V2O5等金属元素,目前主要有酸法、碱法或氯化法等主要回收技术路线。在此过程中,通过化学反应,催化剂中钒、钨、钛等金属转变为其他形式化合物或进入到液相,再经过氧化、水解、结晶及煅烧等反应过程,实现产物分离以及产品性能提升的目的。回收的TiO2既可以作为催化剂的载体,也可以用作涂料、光催化剂等其他材料;WO3、V2O5、MoO3等可以直接作为原料用于脱硝催化剂再生或制备中,也可用于生产其他化工产品。
从我国特有的煤电局面,以及钒、钨、钛冶金工业为基础,以资源循环利用的未来绿色化工为理念,从废脱硝催化剂的成分及原料性质出发,建议因地制宜、因时制宜及因材制宜地选择技术路线和生产。通过冶金和化工过程回收其有价金属,从强化工艺、高效回收利用、清洁生产三个方面考虑,探索低温反应降低能耗,减少酸碱用量、水耗,缩短工艺流程,提高产量和品质,从而优化整合出一套适合于废SCR脱硝催化剂回收的工艺,实现脱硝催化剂“生产-再生-回收”绿色循环。
本文归纳了废钒-钛系脱硝催化剂回收的研究进展,分别对酸法、碱法和氯化法回收钛白,以及钒-钨分离提纯工艺等进行介绍,分析了废脱硝催化剂回收面临的问题并展望其前景,以期为开发出一套高效清洁的废脱硝催化剂回收技术提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王宝冬
刘子林
林德海
曹子雄
何发泉
路光杰
肖雨亭
关键词:  脱硝催化剂  回收  选择性催化还原  钛白        
Abstract: China’s coal based energy structure and more strict NOX emission standard have led to the extensive application of selective catalytic reduction (SCR) denitration catalyst. Due to chemical deactivation or physical structure damage, a large number of spent SCR catalyst have been produced, which cause serious environmental pollution. On the other hand, the main components of SCR catalysts, such as vanadium, tungsten and titanium, have important economic and strategic value. The wide application of SCR catalyst will led to serious environmental pollution and resource waste.
For the recovery of TiO2, WO3, V2O5 and other metal elements from waste SCR catalyst, there are mainly acid, alkali and chlorination met-hods. In these processes, vanadium, tungsten, titanium and other metals in the catalyst are transformed into other forms of compounds or dissolved into liquid phase and then separated through oxidation, hydrolysis, crystallization and calcination. The recovered TiO2 can be used not only as catalyst carrier, but also as coating, photocatalyst and other materials; WO3, V2O5 and MoO3 can be directly used as raw materials catalyst production or regeneration.
Based on China’s unique situation of coal power situation and vanadium, tungsten, titanium industry, and the concept of future green chemical industry, it is suggested that the recovery process should be considered according to location, time and materials itself. The process optimization is suggested to further develop to improve the product quality and recovery rate, to reduce energy consumption and waste emission.
This review offers a retrospection of the research efforts with respect to recovery of spent vanadium-titanium based SCR catalyst, including acid leaching, alkali leaching, and chlorination process, followed by separation and purification process of vanadium and tungsten. We then pay attention to the problems confronting the current state-of-the-art spent SCR catalyst recovery processes. We have confidence that a life-cycle process of SCR catalyst has a bright future in terms of “Production-Regeneration-Recycling”.
Key words:  DeNOx catalyst    recycling    SCR    titanium oxide    vanadium    tungsten
               出版日期:  2021-08-10      发布日期:  2021-08-31
ZTFLH:  X789  
基金资助: 国家重点研发计划(2019YFC1907500)
作者简介:  王宝冬博士,教授级高工,国家能源集团北京低碳清洁能源研究院,环保领域技术总监,从事大气污染治理领域的研发工作。曾主持国家科技部和工业研发项目十多项,获国家专利银奖1项、省部级科技一等奖4项、以第一或通讯作者身份发表论文98篇、专利110项。主要成果在燃煤电厂及非电行业实现了氮氧化物减排的工业化应用。
引用本文:    
王宝冬, 刘子林, 林德海, 曹子雄, 何发泉, 路光杰, 肖雨亭. 废钒-钛系脱硝催化剂回收利用策略与技术进展[J]. 材料导报, 2021, 35(15): 15001-15010.
WANG Baodong, LIU Zilin, LIN Dehai, CAO Zixiong, HE Faquan, LU Guangjie, XIAO Yuting. A Review on Recovery and Utilization of Spent V2O5-WO3/TiO2 Catalyst. Materials Reports, 2021, 35(15): 15001-15010.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070110  或          http://www.mater-rep.com/CN/Y2021/V35/I15/15001
1 Ferella F. Journal of Cleaner Production,2020,256,118990.
2 GB13223-2011, Emission standard of air pollutants for thermal power plants, National Development and Reform Commission Ministry of Environmental Protection of the People’s Republic of China, China,2012.
GB13223-2011,火电厂大气污染物排放标准,环境保护部,2012.
3 Fang H, Han J, Li S X. China Environmental Protection Industry,2010(4),37(in Chinese).
方华,韩静,李守信.中国环保产业,2010(4),37.
4 Zhang D, Wang C, Liu Q. Environmental Technology & Innovation,2019,14,100331.
5 He F Q, Wang B D, Ma S D, et al. Modern Chemical Industry,2017,37(8),72(in Chinese).
何发泉,王宝冬,马少丹,等.现代化工,2017,37(8),72.
6 Wang B D, Wang G G, Liu B, et al.Chemical Industry and Engineering Progress,2013,32(z1),133(in Chinese).
王宝冬,汪国高,刘斌,等.化工进展,2013,32(z1),133.
7 Shen B X, Shi J W, Yang T T, et al. Chemical Industry and Engineering Progress,2008,27(1),64(in Chinese).
沈伯雄,施建伟,杨婷婷,等.化工进展,2008,27(1),64.
8 Zimmerman J B, Anastas T, Erythropel C, et al. Science,2020,367(6476),397.
9 Bi Sheng. Iron Steel Vanadium Titanium,2019,40(4),1(in Chinese).
毕胜,钢铁钒钛,2019,40(4),1.
10 Cui J N, Ren H L. Rare Metals and Cemented Carbides,2013,41(4),14(in Chinese).
崔佳娜,任慧莉.稀有金属与硬质合金,2013,41(4),14.
11 Zhang Q J, Wu Y F, Yuan H R. Resources, Conservation & Recycling,2020,161,104983.
12 Liu J. Modern Salt and Chemical Industry,2019(4),3(in Chinese).
刘军.现代盐化工,2019(4),3.
13 Ma Y P, Liu H X, He B L, et al. Yunnan Chemical Technology,2019,46(6),94(in Chinese).
马艳萍,刘红星,和奔流,等.云南化工,2019,46(6),94.
14 Mazurek K. Hydrometallurgy,2013,134-135,26.
15 Wang Y F, Yan L, Li J, et al. New Chemical Materials,2017,45(6),155(in Chinese).
王玉飞,闫龙,李健,等.化工新材料,2017,45(6),155.
16 Qi C P. Deep purification on TiO2 carrier of waste SCR catalysts and property evaluation of resynthesized catalysts. Master’s Thesis, Institute of Process Engineering, Chinese Academy of Sciences, China,2017(in Chinese).
戚春萍.废旧SCR脱硝催化剂中TiO2载体的深度净化与性能评价.硕士学位论文,中国科学院过程工程研究所,2017.
17 Liu Z L, Wang B D, Ma R X, et al. Inorganic Chemical Industry,2016,48(7),63(in Chinese).
刘子林,王宝冬,马瑞新,等.无机盐化工,2016,48(7),63.
18 Ma Z Y, Liu Y, Zhou J K, et al. Mining & Metallurgy,2019,28(2),82(in Chinese).
马致远,刘勇,周吉奎,等.矿冶,2019,28(2),82.
19 Yan W, Yu Z Y, Zhang C, et al. Environmental Protection of Chemical Industry,2018,38(4),471(in Chinese).
闫魏,余智勇,张畅,等.化工环保,2018,38(4),471.
20 Wang M H, Zhao H, Liu Y, et al. Iron Steel Vanadium Titanium,2017,38(10),32(in Chinese).
王明华,赵辉,刘岩,钢铁钒钛,2017,38(10),32.
21 Li H Q, Guo C C, Inorganic Chemicals Industry,2014,46(5),52(in Chinese).
李化全,郭传华,无机盐工业,2014,46(5),52.
22 Tang D L, Song H, Liu D D, et al. Chinese Journal of Environmental Engineering,2017,11(2),1093(in Chinese).
唐丁玲,宋浩,刘丁丁,等.环境工程学报,2017,11(2),1093.
23 Huang L, Wang H, Li Q, et al. Chinese Resources Comprehensive Utilization,2016,34(4),34(in Chinese).
黄力,王虎,李倩,等.中国资源综合利用,2016,34(4),34.
24 Lu G J, Ouyang C, Ran W X, et al. Chinese Journal of Rare Metal,2014,38(2),270(in Chinese).
卢国俭,欧阳春,冉维娴,等.稀有金属,2014,38(2),270.
25 何发泉,王宝冬,刘子林,等.中国专利,CN110605113A,2019.
26 Wu W, Li H, Meng Z, et al. The Chinese Journal of Process Engineering,2020,19(1),72(in Chinese).
武文粉,李会泉,孟子衡,等.化学工程学报,2020,19(1),72.
27 Huang J, Li R X, Tian L, et al. Chemical Industry and Engineering Progress,2018,37(3),1054(in Chinese).
黄俊,李荣兴,田林,等.化工进展,2018,37(3),1054.
28 Zhou E, Zheng S H, Yuan Z F, et al. Titanium Industry Progress,2004,21(6),35(in Chinese).
周峨,郑少华,袁章福,等.钛工业进展,2004,21(6),35.
29 Liu W X. Chlor-Alkali Industry,2004(8),1(in Chinese).
刘文向.氯碱工业,2004(8),1.
30 Chen C, Lu Q, Lin Z, et al.Chemical Industry and Engineering Progress,2016,35(10),3306.
31 Zhang C. Contemporary Chemical Industry,2017,46(7),1483(in Chinese).
张翠亚.当代化工,2017,46(7),1483.
32 刘清雅,刘振宇,李启超.中国专利,CN103484678B,2013.
33 曾瑞.中国专利,CN102936039B,2012.
34 肖雨亭,赵建新,汪德志,等.中国专利,CN102732730B.2012.
35 Wang S, Xie Y, Yan W, et al.Science of the Total Environment,2018,639,497.
36 朱跃,何胜,张扬.中国专利,CN101921916B,2012.
37 霍怡廷,常志东,董彬,等.中国专利,CN103526031B,2013.
[1] 张辉霞, 贾相华, 左桂鸿, 孙芳. 片状焦钒酸锌的制备及光催化性能[J]. 材料导报, 2021, 35(Z1): 48-50.
[2] 刘子林, 林德海, 何发泉, 曹子雄, 王宝冬. 钠化焙烧法回收废SCR催化剂中钒和钨的浸出机理及浸出动力学研究[J]. 材料导报, 2021, 35(Z1): 429-433.
[3] 郝娟娟, 王乙舒, 吴玉峰, 郭福. 废线路板非金属材料回收利用技术现状与展望[J]. 材料导报, 2021, 35(7): 7001-7012.
[4] 陈瑞芳, 曲雯雯, 王一钧, 马保挎, 陈尚民. 溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响[J]. 材料导报, 2021, 35(6): 6008-6014.
[5] 赵晨, 武文粉, 孟子衡, 李会泉, 王晨晔, 王兴瑞. 废SCR脱硝催化剂中砷元素赋存形态与氧化碱浸脱除[J]. 材料导报, 2021, 35(5): 5001-5010.
[6] 闫朋朋, 苏伟, 韦小凤, 朱学卫, 王府. 碳负载氮掺杂纳米碳化钨电催化剂的制备及析氢性能[J]. 材料导报, 2021, 35(14): 14007-14011.
[7] 陈思潭, 冯可芹, 张燕燕, 蔡雨晨. 利用热处理改善钒钛磁铁矿直接制备的铁基摩擦材料组织与性能[J]. 材料导报, 2021, 35(14): 14120-14124.
[8] 匡敬忠, 朱陆平, 司加保, 黄哲誉, 原伟泉, 邹志磊, 邱廷省. 钨尾矿机械-化学活化及其与水泥水化反应机理[J]. 材料导报, 2021, 35(13): 13018-13024.
[9] 郭梓阳, 霍旺晨, 张育新, 任山, 杨剑. 锰基低温NH3-SCR脱硝催化剂的研究概述[J]. 材料导报, 2021, 35(13): 13085-13099.
[10] 吴博宇, 徐玉平, 吕一鸣, 卢棚, 李小椿, 周海山, 刘松林, 罗广南. 嬗变元素Re、Os对聚变装置面向等离子体钨材料性能的影响[J]. 材料导报, 2021, 35(1): 1154-1161.
[11] 赵惠. 成型工艺对钨基复合材料界面组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 351-355.
[12] 吴志锋, 韩毅, 杨明明, 李国栋, 王忠杰, 刘良, 谢文明. 柔性钨橡胶对手套箱管线辐射热点的屏蔽效果研究[J]. 材料导报, 2020, 34(Z2): 572-575.
[13] 孙绍琦, 王景芹, 朱艳彩, 张广智, 包志舟. 第一性原理分析La、W共掺杂SnO2的导电性[J]. 材料导报, 2020, 34(Z1): 48-52.
[14] 甘杰, 何林, 李强, 杨晓峰, 范辉. 93W-5Ni-2Fe高密度钨合金冲击韧性关键影响因素研究[J]. 材料导报, 2020, 34(Z1): 304-306.
[15] 陈龙海, 李长荣, 黎志英, 李正嵩, 刘占林. HRB500E钢中第二相VC的异质形核分析与晶粒细化[J]. 材料导报, 2020, 34(Z1): 436-439.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed