Please wait a minute...
材料导报  2021, Vol. 35 Issue (13): 13085-13099    https://doi.org/10.11896/cldb.20040254
  无机非金属及其复合材料 |
锰基低温NH3-SCR脱硝催化剂的研究概述
郭梓阳, 霍旺晨, 张育新*, 任山, 杨剑
重庆大学材料科学与工程学院,重庆 400044
A Review of Mn-based Low Temperature NH3-SCR Denitration Catalyst
GUO Ziyang, HUO Wangchen, ZHANG Yuxin*, REN Shan, YANG Jian
College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
下载:  全 文 ( PDF ) ( 7995KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氨气选择性催化还原技术(NH3-SCR)因利用NH3作为还原剂实现NOx的高效转化而受到广泛关注。虽然V2O5-WO3(MoO3)/TiO2催化剂已经投入商业化应用,但为了满足更高和更复杂的实际性应用需求,特别是针对低温脱硝催化剂的开发仍然刺激着新型催化剂的发展。在诸多金属氧化物催化剂中,锰氧化物由于具有多变的阳离子价态、表面不稳定氧和优异的氧化还原性能,在低温NH3-SCR反应中展现出巨大的潜力。然而,目前锰基脱硝催化剂的效率仍受制于NOx的转化率、N2选择性、工作温度窗口以及失活物质(SO2和H2O、碱/碱土金属、重金属等)的影响。因此,近年来研究者们主要针对以上四个方面致力于提高锰基低温催化剂的性能,并取得了丰硕的成果,在充分利用锰氧化物优势的前提下大幅提升了其在低温下的工作效率。除了研究单一锰氧化物的效率外,研究者们通过水热法、水浴法、浸渍法等多种合成方法将过渡金属和稀土金属两类元素用于锰氧化物的修饰,复合和掺杂修饰之后所得的多元金属氧化物解决以上四个方面问题的能力显著提升。此外,通过研究负载锰氧化物的不同基底材料,如TiO2、Al2O3、碳材料和无机非金属矿物等,也可以实现催化剂的效率和稳定性的提高。同时,通过深入探究锰基低温催化剂的相关反应机制,包括“Langmuir-Hinshelwood”机制、“Eley-Rideal”机制和“Fast SCR”反应机制,能够对提升催化剂的效率做出理论指导。文中主要总结了近年来研究人员对提升锰基低温催化剂的工作效率而做出的努力,分别介绍了锰基催化剂的挑战、针对锰氧化物的调控和相关反应机理等,概述了锰基低温催化剂所面临的问题并做出了展望,以期为制备高效稳定和环境友好的低温脱硝催化剂提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭梓阳
霍旺晨
张育新
任山
杨剑
关键词:  选择性催化还原  锰氧化物  低温  脱硝    
Abstract: Selective catalytic reduction with Ammonia (NH3-SCR), which has received widespread attention by utilizing NH3 as reducing agents to achieve high-efficiency conversion of NOx. Although commercial V2O5-WO3(MoO3)/TiO2 catalysts have been came into service, however, in order to meet higher and more complex practical application requirements, especially the exploitation of low-temperature denitration catalysts still stimulate the development of novel SCR catalysts. Among varied metal oxide catalysts, manganese oxide exhibits great potential in low-temperature NH3-SCR reactions, which can be ascribed to its variable cation valence, unstable surface oxygen and excellent redox performance. However, the efficiency of current manganese-based denitration catalysts is still limited by the conversion rate of NOx, N2 selectivity, operating temperature window, and deactivation substances such as SO2 and H2O, alkaline/alkaline earth metals, and heavy metals. Therefore, in recent years, researchers have focused on improving the working efficiency of manganese-based low-temperature catalysts in the above four aspects, and have achieved fruitful results. On the premise of making full use of the advantages of manganese oxide, the work efficiency of manganese-based catalysts at low temperatures is significantly improved. In addition to studying the efficiency of single manganese oxide, researchers have used a variety of synthetic methods such as hydrothermal, water bath, and immersion methods to modify manganese oxides with transition metals and rare earth metals. The multi-element metal oxide formed after compounding and doping modification can greatly improve the ability to address the above four aspects. Moreover, by studying diffe-rent substrate materials supporting manganese oxide, such as TiO2, Al2O3, carbon materials and inorganic non-metallic minerals, the efficiency and stability of the catalyst can also be improved. And through in-depth exploration of the relevant reaction mechanisms of manganese-based low-temperature catalysts, including “Langmuir-Hinshelwood” “Eley-Rideal” and “Fast SCR” reaction mechanism, which can provide theoretical guidance for improving the efficiency of the catalyst. This review mainly summarizes the efforts made by researchers in recent years to improve the efficiency of manganese-based low-temperature catalysts, and the challenges of manganese-based catalysts, the regulation of manganese oxides and related reaction mechanisms are introduced respectively. Furthermore, we pay attention to the problems that confronting the current state-of-the-art manganese-based low-temperature catalysts and put forward corresponding prospects. It is expected to provide a reference for the preparation of high-efficiency, stable and environment-friendly low-temperature denitration catalysts in the future.
Key words:  selective catalytic reduction    MnOx    low temperature    de-NOx
               出版日期:  2021-07-10      发布日期:  2021-07-14
ZTFLH:  TB34  
基金资助: 国家自然科学基金(21576034)
作者简介:  郭梓阳,2018年6月获得学士学位,随后在重庆大学材料科学与工程学院攻读硕士研究生学位,在张育新教授的指导下开展研究工作。目前主要的研究领域为光催化和低温选择性还原脱硝。
张育新,重庆大学材料科学与工程学院教授、博士生导师。本科和硕士分别于2000年和2003年毕业于天津大学化工学院,2008年博士毕业于新加坡国立大学化学与生物分子工程系,随后继续在曾华淳教授课题组从事博士后研究直到2009年。主要的研究兴趣包括纳米材料的制备与应用;超级电容器电极材料的合成与形貌控制;光催化材料的先进设计及性能研究。在 Nat. Chem.、JACS、Adv. Mater.、ACS Nano等期刊上共发表SCI论文190余篇。
引用本文:    
郭梓阳, 霍旺晨, 张育新, 任山, 杨剑. 锰基低温NH3-SCR脱硝催化剂的研究概述[J]. 材料导报, 2021, 35(13): 13085-13099.
GUO Ziyang, HUO Wangchen, ZHANG Yuxin, REN Shan, YANG Jian. A Review of Mn-based Low Temperature NH3-SCR Denitration Catalyst. Materials Reports, 2021, 35(13): 13085-13099.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040254  或          http://www.mater-rep.com/CN/Y2021/V35/I13/13085
1 Chen L, Wang Q L, Wang X X, et al. Chemical Engineering Journal,2020,390,124251.
2 Shan Y L, Du J P, Yu Y B, et al. Applied Catalysis B-Environmental,2020,266,118655.
3 Schreck M, Niederberger M. Chemistry of Materials,2019,31(3),597.
4 Fu M F, Li C T, Lu P, et al. Catalysis Science & Technology,2014,4(1),14.
5 Tang C J, Zhang H L, Dong L. Catalysis Science & Technology,2016,6(5),1248.
6 Zhang R D, Liu N, Lei Z G, et al. Chemical Reviews,2016,116(6),3658.
7 Chen C M, Cao Y, Liu S T, et al. Applied Surface Science,2020,507,145153.
8 Ran M X, Wang H, Cui W, et al. ACS Applied Materials & Interfaces,2019,11(51),47984.
9 Wang L L, Xu J Q, Zhang D Z, et al. Petrochemical Industry Technology,2019,26(5),22(in Chinese).
王罗澜,许家琪,张德志,等.石化技术,2019,26(5)22.
10 Busca G, Lietti L, Ramis G, et al. Applied Catalysis B-Environmental,1998,18(1-2),1.
11 Mohan S, Dinesha P, Kumar S. Chemical Engineering Journal,2020,384,123253.
12 Gao G, Shi J W, Fan Z, et al. Chemical Engineering Journal,2017,325,91.
13 Wu X M, Yu X L, Huang Z W, et al. Applied Catalysis B-Environmental,2020,268,118419.
14 Wang H J, Huang B C, Yu C L, et al. Applied Catalysis A-General,2019,588,117207.
15 Kang M, Kim D J, Park E D, et al. Applied Catalysis B-Environmental,2006,68(1-2),21.
16 Shan W, Song H. Catalysis Science & Technology,2015,5(9),4280.
17 Yang N Z, Guo R T, Pan W G, et al. Fuel,2016,169,87.
18 Xin Y, Li H, Zhang N, et al. ACS Catalysis,2018,8(6),4937.
19 Tian C, Zhang X W, Ren Y J, et al. Electric Power Environmental Protection,2019,35(5),16(in Chinese).
田超,张晓望,任英杰,等.电力科技与环保,2019,35(5),16.
20 Kijlstra W S, Biervliet M, Poels E K, et al. Applied Catalysis B-Environmental,1998,16(4),327.
21 Jiang B Q, Wu Z B, Liu Y, et al. Journal of Physical Chemistry C,2010,114(11),4961.
22 Yu J, Guo F, Wang Y L, et al. Applied Catalysis B-Environmental,2010,95(1-2),160.
23 Jiang L, Liu Q, Ran G, et al. Chemical Engineering Journal,2019,370,810.
24 Shi Y J, Shu H, Zhang Y H, et al. Fuel Processing Technology,2016,150,141.
25 Gao F Y, Tang X L, Yi H H, et al. Applied Surface Science,2019,466,411.
26 Ma Z, Sheng L, Wang X, et al. Advanced Materials,2019,31(42),e1903719.
27 Zhang S G, Zhang B L, Liu B, et al. RSC Advances,2017,7(42),26226.
28 Liu L J, Xu K, Su S, et al. Applied Catalysis A-General,2020,592,117413.
29 Xiong S C, Liao Y, Xiao X, et al. Catalysis Science & Technology,2015,5(4),2132.
30 Liu C, Shi J W, Gao C, et al. Applied Catalysis A-General,2016,522,54.
31 Schill L, Putluru S S R, Jensen A D, et al. Catalysis Letters,2015,145(9),1724.
32 Zhou L L, Li C T, Zhao L K, et al. Applied Surface Science,2016,389,532.
33 Ren S, Li S, Su Z, et al. Chemical Engineering Journal,2018,351,540.
34 Guo R T, Wang Q S, Pan W G, et al. Journal of Molecular Catalysis A-Chemical,2015,407,1.
35 Xu H M, Qu Z, Zong C X, et al. Applied Catalysis B-Environmental,2016,186,30.
36 Gao L, Li C T, Li S H, et al. Chemical Engineering Journal,2019,371,781.
37 Zha K, Kang L, Feng C, et al. Environmental Science-Nano,2018,5(6),1408.
38 Zhu B Z, Zi Z H, Sun Y L, et al. Catalysis Science & Technology,2019,9(12),3214.
39 Fang Q L, Zhu B Z, Sun Y L, et al. Applied Surface Science,2020,509,144901.
40 Guo R T, Wang S X, Pan W G, et al. Journal of Physical Chemistry C,2017,121(14),7881.
41 Fang D, He F, Xie J L. Journal of the Energy Institute,2019,92(2),319.
42 Chen L, Li J H, Ge M F. Chemical Engineering Journal,2011,170(2-3),531.
43 Wang P, Wang Q S, Ma X X, et al. Catalysis Communications,2015,71,84.
44 Xiong S C, Chen J J, Huang N, et al. Applied Catalysis B-Environmental,2020,267,118668.
45 Gong P, Xie J, Fang D, et al. Chinese Journal of Catalysis,2017,38(11),1925.
46 Kapteijn F, Singoredjo L, Andreini A, et al. Applied Catalysis B-Environmental,1994,3(2-3),173.
47 Tang X, Li J, Sun L, et al. Applied Catalysis B-Environmental,2010,99(1-2),156.
48 Fan Z, Wang Z, Shi J W, et al. Journal of Catalysis,2019,370,30.
49 Tian W, Yang H, Fan X, et al. Journal of Hazardous Materials,2011,188(1-3),105.
50 Han L P, Cai S X, Gao M, et al. Chemical Reviews,2019,119(19),10916.
51 Liu J, Wei Y J, Li P Z, et al. ACS Catalysis,2018,8(5),3865.
52 Liu Z, Chen C, Zhao J C, et al. Chemical Engineering Journal,2020,379,122288.
53 Zhu W J, Tang X L, Gao F Y, et al. Chemical Engineering Journal,2020,385,123797.
54 Wu G, Feng X, Zhang H, et al. Applied Surface Science,2018,427,24.
55 Zhou X, Yu F, Sun R B, et al. Applied Catalysis A-General,2020,592,117432.
56 Zhao P P, Guo M Y, Liu Q L, et al. Chemical Engineering Journal,2019,378,122100.
57 Zhang B L, Liebau M, Liu B, et al. Journal of Materials Science,2019,54(9),6943.
58 Li F X, Xie J L, Qi K, et al. Catalysis Letters,2019,149(3),788.
59 Zhao B, Ran R, Guo X, et al. Applied Catalysis A-General,2017,545,64.
60 Wang Z Y, Guo R T, Shi X, et al. Chemical Engineering Journal,2020,381,122753.
61 Yang G, Zhao H, Luo X, et al. Applied Catalysis B-Environmental,2019,245,743.
62 Wang R, Hao Z, Li Y, et al. Applied Catalysis B-Environmental,2019,258,117983.
63 Shi Y R, Tang X L, Yi H H, et al. Industrial & Engineering Chemistry Research,2019,58(9),3606.
64 Meng D, Xu Q, Jiao Y, et al. Applied Catalysis B-Environmental,2018,221,652.
65 Yang S, Qi F, Xiong S, et al. Applied Catalysis B-Environmental,2016,181,570.
66 Wang F, Shen B, Zhu S, et al. Fuel,2019,249,54.
67 Fan C, Li K Z, Peng Y, et al. Physical Chemistry Chemical Physics,2019,21(46),25880.
68 Gao F, Tang X, Yi H, et al. Chemical Engineering Journal,2017,317,20.
69 Wang J Y, Nie Z G, An Z W, et al. ACS Omega,2019,4(2),3755.
70 Hao Z, Jiao Y, Shi Q, et al. Catalysis Today,2019,327,37.
71 Yao X, Chen L, Cao J, et al. Chemical Engineering Journal,2019,369,46.
72 Zhang B L, Liebau M, Suprun W, et al. Catalysis Science & Technology,2019,9(17),4759.
73 Huang Z, Gu X, Wen W, et al. Angewandte Chemie-International Edition,2013,52(2),660.
74 Hu P, Huang Z, Gu X, et al. Environmental Science & Technology,2015,49(11),7042.
75 Fang D, He F, Liu X Q, et al. Applied Surface Science,2018,427,45.
76 Hao Z, Shen Z, Li Y, et al. Angewandte Chemie-International Edition,2019,58(19),6351.
77 Li W, Guo R T, Wang S X, et al. Fuel Processing Technology,2016,154,235.
78 Hu X, Huang L, Zhang J, et al. Journal of Materials Chemistry A,2018,6(7),2952.
79 Tang X, Li J, Wei L, et al. Chinese Journal of Catalysis,2008,29(6),531.
80 Liu J, Li X, Li R, et al. Applied Catalysis A-General,2018,549,289.
81 Zhang K, Xu L T, Niu S L, et al. Korean Journal of Chemical Enginee-ring,2017,34(6),1858.
82 Shi Y, Tang X, Yi H, et al. Industrial & Engineering Chemistry Research,2019,58(9),3606.
83 Wang X B, Duan R B, Liu W, et al. Applied Surface Science,2020,510,145517.
84 Gao C, Shi J W, Fan Z, et al. Applied Catalysis A-General,2018,564,102.
85 Gao C, Shi J W, Fan Z, et al. Fuel Processing Technology,2017,167,322.
86 Chen L, Yuan F, Li Z, et al. Chemical Engineering Journal,2018,354,393.
87 Hou X X, Chen H P, Liang Y H, et al. Catalysis Letters,2020,150(4),1041.
88 Huang J, Huang H, Jiang H, et al. Catalysis Today,2019,332,49.
89 Gao C, Xiao B, Shi J W, et al. Journal of Catalysis,2019,380,55.
90 Li W, Zhang C, Li X, et al. Chinese Journal of Catalysis,2018,39(10),1653.
91 Fan Z, Shi J W, Gao C, et al. Chemical Engineering Journal,2018,348,820.
92 Xu Q, Fang Z, Chen Y, et al. Environment Science & Technology,2020,54(4),2530.
93 Ye B, Lee M, Jeong B, et al. Catalysis Today,2019,328,300.
94 Liu L, Su S, Xu K, et al. Fuel,2019,255,115798.
95 Cheng H, Tan J, Ren Y, et al. Industrial & Engineering Chemistry Research,2019,58(36),16472.
96 Gao G, Shi J W, Liu C, et al. Applied Surface Science,2017,411,338.
97 Zhang N, Li L, Guo Y, et al. Applied Catalysis B-Environmental,2020,270,118860.
98 Liu J, Guo R T, Li M Y, et al. Fuel,2018,223,385.
99 Chen H, Xia Y, Fang R, et al. New Journal of Chemistry,2018,42(15),12845.
10 0 Sun C, Liu H, Chen W, et al. Chemical Engineering Journal,2018,347,27.
1 Peng Y, Li J, Si W, et al. Chemical Engineering Journal,2015,269,44.
2 Liu X, Yu Q, Chen H, et al. Applied Surface Science,2020,508,144694.
3 Yao L, Liu Q, Mossin S, et al. Journal of Hazardous Materials,2020,387,121704.
4 Yang J, Ren S, Zhang T, et al. Chemical Engineering Journal,2020,379,122398.
5 Wang F, Xie Z B, Liang J S, et al. Environmental Science & Technology,2019,53(12),6989.
6 Li Q, Li X, Li W, et al. Chemical Engineering Journal,2019,369,26.
7 Tang X, Li C, Yi H, et al. Chemical Engineering Journal,2018,333,467.
8 Zhou X M, Huang X Y, Xie A J, et al. Chemical Engineering Journal,2017,326,1074.
9 Yao X, Kong T, Yu S, et al. Applied Surface Science,2017,402,208.
11 0 Xie C, Yang S, Shi J, et al. Chemical Engineering Journal,2017,327,1.
1 Ettireddy P R, Ettireddy N, Mamedov S, et al. Applied Catalysis B-Environmental,2007,76(1-2),123.
2 Smirniotis P G, Pena D A, Uphade B S. Angewandte Chemie-International Edition,2001,40(13),2479.
3 Liu Y, Gu T T, Weng X L, et al. Journal of Physical Chemistry C,2012,116(31),16582.
4 Zhao X T, Mao L, Dong G J. Catalysts,2018,8(2),76.
5 Zha K W, Cai S X, Hu H, et al. Journal of Physical Chemistry C,2017,121(45),25243.
6 Xu G Y, Ma J Z, Wang L, et al. ACS Catalysis,2019,9(11),10489.
7 Singoredjo L, Korver R, Kapteijn F, et al. Applied Catalysis B-Environmental,1992,1(4),297.
8 Kapteijn F, Singoredjo L, Vandriel M, et al. Journal of Catalysis,1994,150(1),105.
9 Gao Y, Luan T, Zhang M Y, et al. Catalysts,2018,8(12),642.
12 0 Cao F, Su S, Xiang J, et al. Fuel,2015,139,232.
1 Cao F, Xiang J, Su S, et al. Fuel Processing Technology,2015,135,66.
2 Xiang J, Wang L, Cao F, et al. Chemical Engineering Journal,2016,302,570.
3 Jin R B, Liu Y, Wu Z B, et al. Chemosphere,2010,78(9),1160.
4 Pan W G, Hong J N, Guo R T, et al. Journal of Industrial and Engineering Chemistry,2014,20(4),2224.
5 Yoshikawa M, Yasutake A, Mochida I. Adsorption Science and Technology,2000,173(2),239.
6 Li P, Lu P, Zhai Y B, et al. Environmental Technology,2015,36(18),2390.
7 Cai S, Hu H, Li H, et al. Nanoscale,2016,8(6),3588.
8 Su Y, Fan B, Wang L, et al. Catalysis Today,2013,201,115.
9 Xie A, Zhou X, Huang X, et al. Journal of Industrial and Engineering Chemistry,2017,49,230.
13 0 Cheng J, Ye Q, Li C X, et al. Asia-Pacific Journal of Chemical Engineering,2020,DOI:10.1002/apj.2439.
1 Xie Z B, Song Y J, Liang J S, et al. Materials Review A: Review Papers,2017,31(6),38(in Chinese).
2 解智博,宋艳军,梁金生,等.材料导报:综述篇,2017,31(6),38.
3 Parvulescu V I, Grange P, Delmon B. Catalysis Today,1998,46(4),233.
4 Chen T, Guan B, Lin H, et al. Chinese Journal of Catalysis,2014,35(3),294.
5 Yang S J, Wang C Z, Li J H, et al. Applied Catalysis B-Environmental,2011,110,71.
6 Marban G, Fuertes A B. Catalysis Letters,2002,84(1-2),13.
7 Li X, Li Q, Zhong L, et al. The Journal of Physical Chemistry C,2019,123(41),25185.
8 Sun P, Guo R T, Liu S M, et al. Applied Catalysis A-General,2017,531,129.
[1] 宋云连, 高盼, 吕鹏. 温拌沥青低温性能及其微观特性机理研究[J]. 材料导报, 2021, 35(Z1): 251-257.
[2] 孙万兴, 郭少青, 董弋, 刘洋, 高丽兵, 卫贤贤, 曹艳芝, 董红玉, 李鑫. 低温固化银浆的制备及树脂粘结相对其性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 402-405.
[3] 吴彦霞, 梁海龙, 陈鑫, 陈琛, 王献忠, 戴长友, 胡利明, 陈玉峰. 元素(Ce、Co、La、Sn)掺杂对V-Mo/TiO2催化剂脱硝活性的影响[J]. 材料导报, 2021, 35(6): 6020-6027.
[4] 赵晨, 武文粉, 孟子衡, 李会泉, 王晨晔, 王兴瑞. 废SCR脱硝催化剂中砷元素赋存形态与氧化碱浸脱除[J]. 材料导报, 2021, 35(5): 5001-5010.
[5] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[6] 刘炎昌, 娄鸿飞, 刘东志, 李巍, 周雪琴. 界面聚合法制备十二醇相变微胶囊的工艺及性能[J]. 材料导报, 2021, 35(2): 2157-2160.
[7] 郭才胜, 吴隽, 牛犇, 熊芬, 祝柏林, 黄成斌, 刘静. 英寸级少层MoS2薄膜的低温可控制备[J]. 材料导报, 2021, 35(12): 12039-12043.
[8] 梁锦钰, 冯运莉, 段阳会, 李杰. 高温退火时间对含铌低温取向电工钢二次再结晶行为的影响[J]. 材料导报, 2021, 35(12): 12141-12146.
[9] 张丰, 白银, 蔡跃波. 5 ℃养护下甲酸钙对水泥早期水化的影响[J]. 材料导报, 2021, 35(10): 10055-10061.
[10] 侯德华, 张庆, 韩志宇, 张芳超. 基于主成分分析法的乳化沥青残留物综合性能评价[J]. 材料导报, 2020, 34(Z2): 278-282.
[11] 张坤, 曹兴伟, 王静, 郑力, 王善强. 用于表面去污的丙烯酸均聚物低温成膜可剥离材料研究[J]. 材料导报, 2020, 34(Z1): 576-580.
[12] 程正富, 周明军, 杨邦朝, 郑瑞伦. 石墨烯热学性能非简谐效应的研究进展[J]. 材料导报, 2020, 34(9): 9095-9100.
[13] 王婷玥, 邢书明, 敖晓辉, 王营. 压力对挤压铸造E级钢低温冲击韧性的影响[J]. 材料导报, 2020, 34(6): 6138-6143.
[14] 宋国林, 张泽, 沈成柱, 范鑫, 谢俊伟, 唐国翌. 低温等离子体改性碳纳米管对再生沥青性能的影响[J]. 材料导报, 2020, 34(2): 2052-2057.
[15] 王涛, 李金辉, 赵雅绪, 朱良, 张少霞, 张国平, 孙蓉, 汪正平. 光敏聚苯并噁唑的研究现状与发展趋势[J]. 材料导报, 2020, 34(19): 19183-19189.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed