Please wait a minute...
材料导报  2021, Vol. 35 Issue (7): 7001-7012    https://doi.org/10.11896/cldb.20060279
  材料与可持续发展(四)--材料再制造与废弃物料资源化利用* |
废线路板非金属材料回收利用技术现状与展望
郝娟娟1,2, 王乙舒1,2, 吴玉峰1,2, 郭福1,2
1 北京工业大学材料与制造学部,北京 100124
2 北京工业大学教育部先进功能材料重点实验室,北京 100124
Current Situation and Prospect of Recovery and Utilization of Non-metal Materials of Waste Printed Circuit Board
HAO Juanjuan1,2, WANG Yishu1,2, WU Yufeng1,2, GUO Fu1,2
1 College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
2 Key Laboratory of Advanced Functional Materials of Ministry of Education, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 4024KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,随着科学技术的快速发展和生活水平的不断提高,人们对电子电气设备的需求量不断增加。随着生活质量的提高,人们逐渐追求电子电气设备多功能化、轻便化,造成电子电气设备寿命不断缩短,更新换代速度加快。世界范围内废电子电气设备数量以惊人的速度增长,其成分复杂,含有多种金属元素以及有毒有害物质,对资源回收以及环境保护既是机遇也是挑战。废线路板作为废电子电气设备的主要部件,含有多种金属元素,且含量高于相应矿产,具有很高的回收价值。由于金属材料具有高的经济价值,其回收引起世界广泛关注,很多研究致力于探索高效、环保的金属材料回收方法,目前关于金属材料的回收技术已经十分成熟。然而,由于回收经济效益低,在线路板中占很大比例的非金属材料的回收常常被忽略,大部分采用焚烧或填埋的方式进行处理。由于非金属部分含有重金属以及溴化阻燃剂等有毒有害物质,其在焚烧过程中会产生二噁英、多溴二苯以及二苯并呋喃等有毒气体,而填埋则会导致重金属和溴化阻燃剂浸出,对地下水造成二次污染。随着人们环保意识的提高,为避免资源浪费和环境污染,废线路板中非金属材料的回收逐渐引起重视。科研人员对非金属材料的回收方法进行了大量研究,本文基于已有研究对废线路板中非金属材料回收技术以及现状进行详细阐述,并对未来趋势进行展望。目前非金属材料的回收方法可以分为物理回收方法和化学回收方法两大类,二者均可对废线路板中非金属材料进行有效回收和利用。物理方法主要是将经分离获得的非金属材料作为填料生产热固性树脂基复合材料、热塑性树脂基复合材料,作为原材料生产混凝土,作为改性剂生产粘弹性材料,改变材料的性能,通过替代原有材料降低材料的生产成本。化学回收方法主要包括热解法、液体解聚法以及氢化降解法等。其中关于热解法回收非金属材料的研究较多、较成熟,其他方法的研究较少,后期还需要进行大量探索。本文基于成本以及环境影响等方面,对各种方法的优势、问题进行总结和比较,能够对非金属材料回收的未来发展趋势提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝娟娟
王乙舒
吴玉峰
郭福
关键词:  废线路板  非金属材料  回收    
Abstract: In recent years, with the rapid development of science and technology and the continuous improvement of the standard of living, the demand for electronic and electrical equipment (EEE) continues to increase. With the improvement of the quality of life, electronic and electrical equipment, resulting in the continuous shortening of the life of electronic and electrical equipment, and the speed of upgrading with the improvement of life quality, people are gradually pursuing the multi-function and portability of EEE, which resulted in that the service life of EEE is shorten continually and the speed of replacement is accelerated. The number of waste electronic and electrical equipment (WEEE) in the world is growing at an alarming rate. The composition of WEEE is very complex containing a variety of metal elements and harmful substances, which make it be both an opportunity and a challenge for resource recovery and environmental protection. As the main component of WEEE, waste printed circuit boards (WPCBs), which contain a variety of metal elements whose content is higher than the corresponding mineral products, have high reco-very value. Due to the high economic value, the recycling of metal materials has attracted worldwide attention. Many researches have explored many efficient and environmental friendly methods to recycle metal materials. At present, the recycling technologies of metal materials have been very mature. However, the non-metal materials, which accounts for a large proportion in WPCBs, are often neglected due to the low economic value. The common recycling techniques of non-metal materials are incineration or landfill. The non-metal material contains heavy metals, brominated flame retardants and other harmful substances, toxic gases such as dioxins, polybrominated diphenyls and dibenzofurans would be produced during the incineration process. In addition, landfill will lead to secondary groundwater pollution because of the leaching of heavy metals and brominated flame retardants. With the increasing of environmental awareness, the recycling of non-metal materials has attracted more and more attention to avoid resources waste and environmental pollution. At present, a lot of researches have been done to recover non-metal mate-rials from WPCBs. At this paper, the technologies and current situation of non-metal materials recycling are elaborated based on the existing researches. And the future trend of non-metal materials recycling is also discussed. At present, the methods of non-metal materials recovery include physical recovery methods and chemical recovery methods, which could recover and utilize the non-metal materials effectively. The phy-sical methods use the separated non-metallic materials as fillers, raw materials or modifiers to produce thermosetting resin matrix composites and thermoplastic resin matrix composites, concrete and viscoelastic materials. These methods could change the properties of materials and reduce the production cost of the materials by replacing the original materials using non-metal materials. Chemical recovery methods mainly include pyrolysis, liquid depolymerization and hydrogenation degradation. Among them, the pyrolysis recovery method has received more attention than other methods. Much work needs to be done on the recovery of non-metal materials by liquid depolymerization and hydrogenation degradation. This paper summarizes and compares the advantages and problems of various methods based on cost and environmental impact. And a reference is provided for the future development trend of non-metal materials recycling.
Key words:  waste printed circuit board    non-metal material    recycling
               出版日期:  2021-04-10      发布日期:  2021-04-22
ZTFLH:  X76  
基金资助: 国家重点研发计划(2018YFC1902501;2018YFC1903605)
作者简介:  郝娟娟,2018年6月毕业于北京工业大学,获得工学硕士学位。现为北京工业大学材料科学与工程学院博士研究生,在郭福教授的指导下进行研究。目前主要研究领域为废线路板中稀贵金属的提取。
郭福,北京工业大学教授,博士研究生导师。2001年博士毕业于美国密歇根州立大学,2003年到北京工业大学材料科学与工程学院任教至今。在国内外学术期刊上发表论文200余篇。其团队主要研究方向包括:先进电子封装互连材料;无铅焊料开发过程中的合金化及复合方法研究;焊点可靠性表征;热电材料等。目前承担国家自然科学基金、北工大青年研究基地等多项研究工作。现任中国材料研究学会青年委员会理事,副秘书长,北京市电子学会生产技术专业委员会主任委员,美国电子组装及连接材料专业委员会副主任,美国金属学会、材料学会、汽车工程师学会会员。
引用本文:    
郝娟娟, 王乙舒, 吴玉峰, 郭福. 废线路板非金属材料回收利用技术现状与展望[J]. 材料导报, 2021, 35(7): 7001-7012.
HAO Juanjuan, WANG Yishu, WU Yufeng, GUO Fu. Current Situation and Prospect of Recovery and Utilization of Non-metal Materials of Waste Printed Circuit Board. Materials Reports, 2021, 35(7): 7001-7012.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060279  或          http://www.mater-rep.com/CN/Y2021/V35/I7/7001
1 Muammer K. Waste Management, 2016, 57, 64.
2 Hadi P, Gao P, Barford J P, et al. Journal of Hazardous Materials, 2013, 252-253, 166.
3 Yang J, Wang H, Zhang G, et al. Resources, Conservation and Recycling, 2019, 146, 264.
4 Li J, Xu Z M. Environmental Science & Technology, 2010, 44(4),1418.
5 Ma E, Lu R X, Xu Z M. Green Chemistry, 2012,14(12), 3395.
6 Xue M, Li J, Xu Z. Environmental Science & Technology, 2012, 46(5), 2661.
7 Duan H, Hu J, Yuan W, et al. Journal of Cleaner Production, 2016, 137, 546.
8 Zhou L, Xu Z. Environmental Science & Technology, 2012, 46(9), 4713.
9 Sepuiveda A, Schluep M, Renaud F G, et al. Environmental Impact Assessment Review, 2010, 30(1), 28.
10 Guo J, Tang Y, Xu Z M. Environmental Science & Technology, 2010, 44(1), 463.
11 Guo J, Cao B, Guo J, et al. Environmental Science & Technology, 2008, 42(14), 5267.
12 Awasthi A K, Zeng X, Li J. Environmental Science and Pollution Research, 2016, 23 (12), 11509.
13 Chen M, Ogunseitan O A, Wang J, et al. Environment International, 2016, 89-90, 147.
14 Kiddee P, Naidu R, Wong M H. Waste Management, 2013, 33(5), 1237.
15 Kumar A, Holuszko M, Espinosa D C R. Resources Conservation & Recycling, 2017, 122, 32.
16 Song Q, Li J. Waste Management, 2014, 34(12), 2587.
17 Zhang L, Xu Z. Journal of Cleaner Production, 2016, 127, 19.
18 Ata A, Ceren E, Chandra S G, et al. Waste Management, 2015, 45, 258.
19 Lu Y, Xu Z. Resources Conservation & Recycling, 2016, 113, 28.
20 Jadhav U, Hocheng H. Scientific Reports, 2015, 5, 14574.
21 Chiang H L, Lin K H, Lai M H, et al. Journal of Hazardous Materials, 2007, 149(1), 151.
22 Pinho S, Ferreira M, Almeida M F. Resources Conservation & Recycling, 2018, 132, 71.
23 Lin K H, Chiang H L. Journal of Hazardous Materials, 2014, 271, 258.
24 Yokoyama S, Iji M. In:Proceedings of the 1997 IEEE International Symposium. San Francisco, California, 1997, pp.1094.
25 Zheng Y, Shen Z, Cai C, et al. Journal of Hazardous Materials, 2009, 163(2-3), 600.
26 Guo J, Guo J, Xu Z. Journal of Hazardous Materials, 2009, 168(2-3), 567.
27 Guo J, Li J, Rao Q, et al. Environmental Science & Technology, 2008, 42(2), 624.
28 Guo J, Guo J, Cao B, et al. Journal of Hazardous Materials, 2009, 163(2-3),1019.
29 Guo J, Cao B, Guo J, et al. Environmental Science & Technology, 2008, 42(14), 5267.
30 Hameed N, Sreekumar P A, Francis B, et al. Composites Part A, 2007, 38(12), 2422.
31 Goertzen W K, Kessler M R. Composites Part B, 2007, 38(1),1.
32 Sirivedin S, Fenner D N, Nath R B, et al. Composites Part A Applied Science & Manufacturing, 2006, 37(11), 1936.
33 Goertzen W K, Kessler M R. Materials Science & Engineering A Structu-ral Materials Properties Microstructure & Processing, 2006, A421(1-2), 217.
34 Chai S G. China Plastics Industry, 2013, 41(6),32(in Chinese).
柴颂刚. 塑料工业, 2013, 41(6), 32.
35 Gao X H, Li Q S, Qiu J. Waste Management, 2018, 74, 427.
36 Markov A, Fiedler B, Schulte K. Composites Part A Applied Science & Manufacturing, 2006, 37(9),1390.
37 Liang J Z. Journal of Applied Polymer Science, 2002, 83(7),1547.
38 Zebarjad S M, Bagheri R, Lazzeri A, et al. Materials & Design, 2003, 24(2),105.
39 Alcock B, Cabrera N O, Barkoula N M, et al. Composites Part A, 2006, 37(5),716.
40 Yang K, Yang Q, Li G, et al. Polymer Engineering & Science, 2007, 47(2),95.
41 Cho J, Joshi M S, Sun C T. Composites Science & Technology, 2006, 66(13),1941.
42 Leong Y W, Bakar M B A, Ishak Z A M, et al. Journal of Applied Polymer Science, 2004, 91(5), 3315.
43 Zheng Y, Shen Z, Cai C, et al. Journal of Hazardous Materials, 2009, 163(2-3), 600.
44 Xie H L, Wu M, Zhao J, et al. CIESC Journal, 2015,66(3), 1185(in Chinese).
谢恒来,吴曼,赵军,等. 化工学报,2015, 66(3), 1185.
45 Duan H B,Li J H,Wang S T. China Environmental Science, 2012, 32(1), 100(in Chinese).
段华波,李金惠,王斯婷. 中国环境科学,2012,32(1), 100.
46 Liu L Y,Guo Q J,Wu M, et al. CIESC Journal,2013, 65(4), 1495(in Chinese).
刘鲁艳,郭庆杰,吴曼,等. 化工学报, 2013, 65(4), 1495.
47 Chen Y Z, Wu M, Xie H L, et al. CIESC Journal, 2015, 66(12), 5163(in Chinese).
陈义忠,吴曼,谢恒来,等. 化工学报, 2015,66(12),5163.
48 Zhu P, Liu X, Wang Y, et al. Journal of Environmental Chemical Engineering, 2017, 5(4), 3439.
49 Lin Z, Lu S Y, Luo L J. Environmental Science and Technology,2009, 22(5),1(in Chinese).
林芝,陆书玉,罗丽娟. 环境科技, 2009, 22(5), 1.
50 Wang X J, Guo Y W, Liu J Y, et al. Research of Environmental Sciences, 2010, 23(2),227(in Chinese).
王新杰,郭玉文,刘景洋,等. 环境科学研究, 2010, 23(2), 227.
51 Arya C, Clarke J L, Kay E A, et al. Engineering Structures, 2002, 24(7),889.
52 Niu X, Li Y. Journal of Hazardous Materials, 2007, 145(3), 410.
53 Sanjeev J, Sai Nitesh K J N. Materials Today: Proceedings,2020,27(2),1559.
54 Panyakapo P, Panyakapo M. Waste Management, 2008, 28(9), 1581.
55 Peng M, Layiding W, Dong X,et al. In:IEEE International Symposium on Electronics & the Environment. Scottsdale, AZ, USA, 2004,pp. 237.
56 Wang Z R, Du Z, Zhang Y G, et al. China Concrete and Cement Pro-ducts, 2017(8), 87(in Chinese).
王祖润, 杜中, 张永贵,等. 混凝土与水泥制品, 2017(8),87.
57 Yokoyama S, Iji M. In:Proceedings of the 1995 IEEE International Symposium.Orlando, FL, 1995, pp.132.
58 Sengoz B, Isikyakar G. Construction & Building Materials, 2008, 22(9), 1897.
59 Behnood A, Modiri M. European Polymer Journal, 2019, 112, 766.
60 Mohd Hasan M R, Colbert B, You Z, et al. Construction & Building Materials, 2016, 110, 79.
61 Chen J, Gu Y C, Ding G Y. Journal of Dalian Jiaotong University,2017, 38(5), 101(in Chinese).
陈军, 顾一春, 丁功瀛. 大连交通大学学报, 2017, 38(5), 101.
62 Yin J B, Wang D Y. Petroleum Asphalt, 2009, 23(5), 5(in Chinese).
尹健标, 王端宜. 石油沥青, 2009,23(5),5.
63 Xu L J, Guan J, Yuan H, et al. Chinese Journal of Environmental Engineering, 2017, 11(4),2439(in Chinese).
徐丽军,关杰,袁昊,等. 环境工程学报, 2017, 11(4), 2439.
64 Jin Y Q, Tao L, Chi Y, et al. Journal of Hazardous Materials, 2011, 186(1), 707.
65 Hall W J, Williams P T. Resources Conservation & Recycling, 2007, 51(3), 691.
66 Ghosh B, Ghosh M K, Parhi P, et al. Journal of Cleaner Production, 2015, 94(1), 5.
67 Grause G, Furusawa M, Okuwaki A, et al. Chemosphere, 2008, 71(5),872.
68 Jin Y Q, Tao L, Chi Y, et al. Journal of Hazardous Materials, 2011, 186(1), 707.
69 Luda M P, Balabanovich A I, Zanetti M, et al. Polymer Degradation and Stability, 2007, 92, 1088.
70 Weber R, Kuch B. Environment International, 2003, 29(6), 699.
71 Long L, Sun S, Zhong S, et al. Journal of Hazardous Materials, 2010, 177(1-3), 626.
72 Hall W J, Miskolczi N, Onwudili J, et al. Energy & Fuels, 2008, 22(3), 1691.
73 Kim Y M, Han T U, Watanabe C, et al. Journal of Analytical & Applied Pyrolysis, 2015, 115(9), 87.
74 Guan G Q, Zhou W X, Chen L Q, et al. CIESC Journal, 2009, 60 (1), 216(in Chinese).
关国强,周文贤,陈烈强,等. 化工学报, 2009, 60 (1), 216.
75 Terakado O, Ohhashi R, Hirasawa M. Journal of Analytical & Applied Pyrolysis, 2013, 103(9), 216.
76 Ke Y H,Yang E T, Liu X, et al. New Carbon Materials, 2013, 28(2), 108(in Chinese).
柯义虎, 杨二桃, 刘欣,等. 新型炭材料, 2013, 28(2),108.
77 Huang J Z, Zhao J F,Cheng Q, et al. Guangzhou Chemical Industry, 2018, 46(19), 53(in Chinese).
黄继忠, 赵际沣, 程青, 等. 广州化工, 2018, 46(19),53.
78 Gao R, Xu Z. Journal of Hazardous Materials, 2019, 364(15), 1.
79 Quan C, Li A, Gao N. Journal of Hazardous Materials, 2010, 179(1-3), 911.
80 Zhao C H, Zhang X P, Shi L. Waste Management, 2017, 61, 354.
81 Ma C, Kamo T. Journal of Analytical & Applied Pyrolysis, 2018, 134(9), 614.
82 Park Y K, Han T U, et al. Journal of Hazardous Materials, 2019, 367(5), 50.
83 Nie C C, Wang Y Y, Zhang H, et al. Journal of Cleaner Production, 2020, 258, 120976.
84 Lee J, Lee T, Ok Y S, et al. Journal of CO2 Utilization, 2017, 20, 66.
85 Evangelopoulos P, Kantarelis E, Yang W. Applied Energy, 2017, 204(15), 1065.
86 Zhou Y, Qiu K. Journal of Hazardous Materials, 2010, 175(1-3), 823.
87 Wang Y, Sun S, Yang F, et al. Process Safety & Environmental Protection, 2015, 98, 276.
88 Hall W J, Williams P T. Circuit World, 2007, 33(4), 43.
89 Rajarao R, Sahajwalla V, Cayumil R, et al. Procedia Environmental Sciences, 2014, 21(9), 33.
90 Shen Yafei. Waste Management, 2018, 76, 537.
91 Shen Y, Chen X, Ge X, et al. Journal of Cleaner Production, 2018, 176, 1045.
92 Motasemi F, Afzal M T. Renewable and Sustainable Energy Reviews, 2013, 28, 317.
93 Bhattacharya M, Basak T. Energy, 2016, 97, 306.
94 Suriapparao D V, Vinu R. Journal of Analytical & Applied Pyrolysis, 2015, 113, 701.
95 Suriapparao D V, Vinu R. RSC Advances, 2015, 5(71), 57619.
96 Suriapparao D V, Batchu S P, Jayasurya S, et al. Journal of Cleaner Production, 2018, 197, 525.
97 Chien Y C, Wang H P, Lin K S, et al. Water Research, 2000, 34(17), 4279.
98 Tagaya H, Shibasaki Y, Kato C, et al. Journal of Material Cycles and Waste Managemen, 2004, 6(1), 1.
99 Xing M, Zhang F S. Chemical Engineering Journal, 2013, 219, 131.
100 Li K, Xu Z. Environmental Science & Technology, 2015, 49(3), 1761.
101 Xiu F R, Qi Y, Wang S, et al. Journal of Hazardous Materials, 2018, 344, 333.
102 Sanyal S, Ke Q, Zhang Y, et al. Journal of Cleaner Production, 2013, 41, 174.
103 Zhu P, Liu X, Wang Y, et al. Journal of Environmental Chemical Engineering, 2017, 5(4), 3439.
104 Yousef S, Tatariants M, Bendikiene R, et al. Journal of Cleaner Production, 2017, 167, 271.
105 Ranjanverma H, Singh K K, Mankhand T R. Journal of Cleaner Production, 2016, 139, 586.
106 Wath S, Katariya M, Singh S, et al. Chemical Engineering Journal, 2015, 280, 391.
107 Braun D, Gentzkow W V, Rudolf A P. Polymer Degradation & Stability, 2001, 74(1), 25.
108 Yamawaki T. Fire and Materials, 2003, 27(6), 315.
109 Yang H C, Cho Y J, Yun J S, et al. Canadian Journal of Chemical Engineering, 2003, 81(3-4),713.
110 Yang H C, Cho Y J, Eun H C, et al. Studies in Surface Science & Catalysis, 2006, 159(6), 577.
111 Tongamp W, Zhang Q, Saito F. International Journal of Hydrogen Energy, 2008, 33(15), 4097.
112 Tongamp W, Zhang Q, Shoko M, et al. Journal of Hazardous Mate-rials, 2009, 167(1-3), 1002.
113 Salbidegoitia J A, Fuentes-Ordóñez E G, González-Marcos M P, et al. Fuel Processing Technology, 2015, 133, 69.
[1] 张少辉, 王艳, 牛荻涛. 废旧纤维在水泥基材料中的应用研究进展[J]. 材料导报, 2020, 34(23): 23042-23050.
[2] 张春伟, 孙元, 唐俊杰, 房大维. 工业废料中铼元素的回收与再利用研究进展[J]. 材料导报, 2020, 34(15): 15145-15152.
[3] 徐祺, 王三反, 孙百超. 双膜三室同槽电解金属锰和微粒电解二氧化锰的控制因素[J]. 材料导报, 2020, 34(14): 14016-14022.
[4] 韩雪莹, 刘新利, 吴壮志, 段柏华, 王德志. 含难熔金属涂层的研究进展[J]. 材料导报, 2020, 34(13): 13146-13154.
[5] 邓友生, 蔡梦真, 王一雄, 苏家琳, 孙雅妮. 可回收锚件机理与工程应用研究[J]. 材料导报, 2019, 33(Z2): 473-479.
[6] 郭强, 徐恒元, 何凯, 孙振萍, 李逸. 树脂基复合材料废弃物回收再利用现状及发展趋势[J]. 材料导报, 2019, 33(Z2): 634-638.
[7] 梁光兵, 李艳红, 张远琴, 訾昌毓, 赵文波, 张登峰. 磁响应吸油材料的研究进展[J]. 材料导报, 2019, 33(23): 3999-4007.
[8] 闫霆, 王文欢, 王如竹. 化学吸附储热技术的研究现状及进展[J]. 材料导报, 2018, 32(23): 4107-4115.
[9] 程前, 张婧. 废锂电池负极全组分绿色回收与再生[J]. 材料导报, 2018, 32(20): 3667-3672.
[10] 周头军,李家节,郭诚君,丁云峰,陈金水. 回收制备烧结Nd-Fe-B磁体的磁性能与耐热性能[J]. 《材料导报》期刊社, 2018, 32(2): 180-183.
[11] 刘欢, 华中胜, 何几文, 唐泽韬, 张伟伟, 吕辉鸿. 废弃氧化铟锡中铟的回收技术综述[J]. 《材料导报》期刊社, 2018, 32(11): 1916-1923.
[12] 施麒,马越,毛贺,赖金涛. 应用等径角挤压(ECAP)技术的金属粉末固结和碎屑回收研究现状*[J]. 《材料导报》期刊社, 2017, 31(7): 88-93.
[13] 廖亚龙, 曹磊, 王祎洋, 叶朝. 溶液中镓的提取与分离研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 133-138.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed