Please wait a minute...
材料导报  2020, Vol. 34 Issue (15): 15145-15152    https://doi.org/10.11896/cldb.19060090
  金属及金属基复合材料 |
工业废料中铼元素的回收与再利用研究进展
张春伟1,2, 孙元2, 唐俊杰2,3, 房大维1
1 辽宁大学化学院, 沈阳 110036
2 中国科学院金属研究所,沈阳110016
3 辽宁科技学院生物医药与化学工程学院,本溪 117004
Research Progress on the Recovery and Reuse of Rhenium in Industrial Waste
ZHANG Chunwei1,2, SUN Yuan2, TANG Junjie2,3, FANG Dawei1
1 College of Chemistry, Liaoning University, Shenyang 110036, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 College of Biomedical and Chemical Engineering, Liaoning Institute of Science and Technology, Benxi 117004, China
下载:  全 文 ( PDF ) ( 3715KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属铼具有硬度和机械强度高、塑性和机械稳定性好的物理特性以及催化活性和抗腐蚀性优异的化学特性,在高温合金、石油化工等领域具有重要的应用价值和广阔的应用前景。然而铼在自然界中的储量非常少,地壳中铼的丰度约为6.57×10-10。我国铼资源相对匮乏,没有可供工业开采的铼矿床,其多以伴生矿形式存在,大多分布在辉钼矿和铜铼硫化矿中。目前已探明的铼矿石储量仅237 t左右。
随着航空航天、石油化工领域的快速发展,铼资源的需求量也越来越大。我国约80%的铼应用于高温合金领域,主要用来制造航空航天领域的涡轮发动机叶片,20%的铼用于石油催化裂化重整的催化剂。其中,制造过程产生的合金废料约占年产量的70%。由于国内企业对回收铼二次资源的重视度不高,回收技术相对薄弱等导致资源浪费十分严重。全球资源回收与再利用产业在迅速发展,西方发达国家对铼二次资源的回收与再利用非常重视。美国和德国是铼资源回收的主要国家,美国在2014年对高温合金中铼的回收量达到6 t。铼二次资源得不到有效的再利用会加剧能源和资源的紧缺,研究科学、经济、环保的铼资源回收再利用工艺对缓解我国能源短缺问题具有重要意义。
目前含铼的废料主要来源有两种:(1)含铼烟尘、废催化剂、高温合金等固体废料,对其回收的方法主要有氧化酸浸法、高温碱熔法、电解溶解法等,然后通过后序处理富集铼。(2)冶炼精矿等产生的含铼废液,对其回收的方法主要有离子交换法、萃取法、活性炭吸附法、生物吸附法等。回收过程中的关键是如何提高铼的回收率、降低成本和对环境无污染。由于铼和钼的性质相近,我国最大的挑战在于如何使铼和钼有效分离,并通过更有效、更经济、更环保的方式将其提取出来以实现工业化。
本文结合工业废料中铼资源的具体情况,归纳了铼二次资源回收与再利用的研究进展,分别对含铼固体废料以及含铼废液中铼的回收方法进行总结介绍。分析了不同工艺对铼二次资源回收的特点及所面临的问题,并对其未来发展方向进行展望,以期实现铼资源回收与再利用效率的最大化,缓解目前我国铼金属材料供应紧张的局面。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张春伟
孙元
唐俊杰
房大维
关键词:  铼应用  铼二次资源  废料来源  回收  再利用    
Abstract: Metal rhenium has the physical properties of high hardness, high mechanical strength, good plasticity and good mechanical stability as well as excellent catalytic activity and corrosion resistance chemical properties,so it has important application value and broad application prospect in the fields of superalloy and petrochemical industry. However, reserves of rhenium in nature are very small, and the abundance of rhenium in the crust is about 6.57×10-10.Rhenium resources are relatively scarce in China, and there are no rhenium deposits available for industrial exploitation. Most of these rhenium exist in the form of associated minerals, mostly distribute in molybdenite and copper-rhenium sulfide. Currently, the proved rhenium ore reserves are only about 237 tons.
With the rapid development of aerospace and petrochemical fields, the demand for rhenium resources is increasing.About 80% of rhenium in China is used in the field of superalloys, mainly used to make turbine engine blades of aerospace and aviation, and 20% of rhenium is used as catalysts for catalytic cracking reforming of petroleum.The alloy waste produced in the manufacturing process accounts for about 70% of the an-nual output.Domestic enterprises paid little attention to the recovery of rhenium secondary resources, and the recovery technology was relatively weak, which led to serious resource waste.The global resource recovery and reuse industry is developing rapidly. Western developed countries attach great importance to the recovery and reuse of rhenium secondary resources.The United States and Germany are the major countries for the recovery of rhenium resources, and the recovery amount of rhenium in superalloy in the United States reached 6 tons in 2014.The reuse of rhe-nium will aggravate the deterioration of energy and resources, so it is of great significance to study the recycling process of rhenium resources in a scientific, economic and environmental way to alleviate the problem of energy shortage in China.
There are mainly two kinds of rhenium wastes produced in industry: one is the rhenium-containing smoke, waste catalysts,superalloys and other solid waste, which can be recovered mainly by means of oxidative acid leaching, high-temperature alkali melting, electrolytic dissolution, etc, and then enriched rhenium through treatment.The second is the rhenium waste liquid produced by smelting concentrate, etc. The recovery methods mainly include ion exchange extraction, activated carbon adsorption, biological adsorption and other recovery processes. The key problem is how to improve the recovery rate of rhenium, reduce the cost and no pollution to the environment.Since rhenium and molybdenum are similar in nature, the biggest challenge for China is how to effectively separate rhenium and molybdenum and extract them in a more efficient, economical and environmentally friendly way to achieve industrialization.
Based on the specific situation of rhenium resources in industrial wastes, this paper summarizes the research progress on the recovery and reuse of rhenium secondary resources, and separately summarizes and introduces the recovery methods of rhenium in rhenium solid waste and rhenium waste liquid.Different process of rhenium secondary resources recovery characteristics and the problems are analyzed, the technology for the future development direction is forecasted, in order to realize the maximum recovery and reuse efficiency of rhenium resources and alleviate the current situation of rhenium metal material supply shortage in China.
Key words:  application of rhenium    rhenium secondary resource    sources of waste    recycling    reuse
               出版日期:  2020-08-10      发布日期:  2020-07-14
ZTFLH:  TG146.4  
基金资助: 沈阳材料科学国家研究中心-有色金属加工与再利用国家重点实验室联合基金(18LHZD003);辽宁省科技厅博士科研启动基金计划项目(2019-BS-130);辽宁科技学院博士启动基金(1810B06);辽宁省教育厅高校科研基金项目(201710311)
通讯作者:  davidfine@163.com;yuansun@imr.ac.cn   
作者简介:  张春伟,2017年6月毕业于曲阜师范大学,获得工学学士学位。现为辽宁大学化学院硕士研究生,在房大维研究员的指导下进行研究。目前主要研究领域为高温合金废料回收再利用。
孙元,中国科学院金属研究所副研究员。1996—2011年在哈尔滨工业大学学习并取得学士学位、硕士学位及博士学位,期间曾在日本大阪大学进行留学研究工作,2011—2013年在中国科学院金属研究所从事博士后研究工作。目前主要研究领域为高温合金回收与再利用。
房大维,辽宁大学稀散元素化学研究院研究员、博士研究生导师。2002年7月本科毕业于辽宁大学化学院, 2008年在中国科学院青海盐湖所取得博士学位,2010—2012年在中国科学院大连化学物理研究所进行博士后研究工作。现任中国稀散金属冶金学术委员会副主任委员,中国化学会化学热力学与热分析学术委员会副主任委员,中国有色金属学会节能减排专业委员会副主任委员。主要从事离子液体的合成、性质及催化应用;稀散元素的提取分离及高附加值利用;树脂基复合材料的研制等工作。近年来,在J. Phys Chem B.,Energy & Fuels等国内外学术刊物发表论文100余篇,授权专利20余项,出版专著2部。2014年受聘“辽河学者”,2016年荣获辽宁省优秀科技工作者,2017年被授予“沈阳振兴发展带头人”称号,2018年获批辽宁省优秀专家。
引用本文:    
张春伟, 孙元, 唐俊杰, 房大维. 工业废料中铼元素的回收与再利用研究进展[J]. 材料导报, 2020, 34(15): 15145-15152.
ZHANG Chunwei, SUN Yuan, TANG Junjie, FANG Dawei. Research Progress on the Recovery and Reuse of Rhenium in Industrial Waste. Materials Reports, 2020, 34(15): 15145-15152.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060090  或          http://www.mater-rep.com/CN/Y2020/V34/I15/15145
1 Liu H Z, Wang W, Cao Y H, et al.Conservation and Utilization of Mine-ral Resources,2014, (5),55 (in Chinese).刘红召, 王威, 曹耀华, 等. 矿产保护与利用, 2014(5),55.2 Peng Z, Luo M B, Hua R, et al.Hydrometallurgy,2012, 31(2), 76 (in Chinese).彭真, 罗明标, 花榕, 等. 湿法冶金, 2012, 31(2), 76.3 Wang H Y, He L.China Resources Comprehensive Utilization, 2018,36(11),70 (in Chinese).王海勇, 何亮. 中国资源综合利用, 2018,36(11),70.4 Fan X X,Liu L. China Molybdenum,2015,39(6),29 (in Chinese).范小祥,刘玲.中国钼业,2015,39(6),29.5 Chen X, Tan Z, Wu Y F,et al.Modern Chemical Industry,2017,37(1),60 (in Chinese).陈希, 谭哲,吴玉锋, 等. 现代化工, 2017,37(1),60.6 Millensifer T A.Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley and Sons, Inc,USA, 2001.7 Li H M, He X T, Zhao Y, et al. Precious Metals, 2014,35(2),77 (in Chinese).李红梅,贺小塘,赵雨, 等.贵金属,2014,35(2),77.8 Liu W, Ding L L, Guo M Y,et al.Rare Metals and Cemented Carbides ,2017,45(5),1 (in Chinese).刘伟,丁留亮,郭明宜, 等. 稀有金属与硬质合金,2017,45(5),1.9 Wu J H, Zhang W H, Liu G, et al.China Resources Comprehensive Utilization,2015,33(2),40 (in Chinese).邬建辉,张文宏,刘刚, 等. 中国资源综合利用,2015,33(2),40.10 Abisheva Z S, Zagorodnyaya A N, Becturganov N S, et al.Geriatrics, 2012, 46(7),57.11 Zhang B, Liu H Z, Wang W, et al.Hydrometallurgy, 2017, 173,50.12 Reck B K, Graedel T E.Science, 2012, 337(6095),690.13 Gerhardt N I , Palant A A , Petrova V A, et al. Hydrometallurgy, 2001, 60(1),1.14 Yang K B, Hua H Q, Li W Y, et al. Hydrometallurgy,2014,33(1),50 (in Chinese).杨坤彬, 华宏全, 李文勇, 等. 湿法冶金, 2014,33(1),50.15 Gao Z Z.China Nonferrous Metallurgy, 2008(6),68 (in Chinese).高志正.中国有色冶金,2008(6),68.16 Gao T X, Bao F, Li S Q, et al.Journal of Tongling University,2008(4),63 (in Chinese).高天星,鲍负,李顺齐, 等. 铜陵学院学报,2008(4),63.17 Kamil B, Witold W, Jerzy M, et al. Materials Science and Engineering: A,2018, 735, 121.18 Zhang Y Y, Wang T, Jiang S Y, et al. Journal of Manufacturing Processes, 2018, 32,337. 19 Fedoseeva A, Nikitin I, Dudova N, et al.Materials Science and Enginee-ring:A, 2018, 724,2920 Ding Q Q, Yu Q, Li J X, et al.Materials Reports A: Review Papers, 2018,32(1),110 (in Chinese).丁青青, 余倩, 李吉学, 等. 材料导报:综述篇,2018,32(1),110.21 Wu X, Wu Y Q, Meng H Q, et al.China Molybdenum, 2015,39(1), 8 (in Chinese).吴贤, 吴永谦, 孟晗琪, 等. 中国钼业, 2015, 39(1), 8.22 Shen Y F, Peng H Q, Zhao J C, et al.Precious Metals,2016,37(4),78 (in Chinese).沈亚峰,彭辉强,赵家春, 等. 贵金属,2016,37(4),78.23 Chen G, Zhao H L, Dai Y, et al.Contemporary Chemical, 2013,42(2),184 (in Chinese).陈光,赵华灵,戴毅, 等. 当代化工,2013,42(2),184.24 Kumar P V.Electrochimica Acta, 2018, 271, 433.25 Li L P, Liu Y, Zhang W, et al.China Molybdenum, 2016,40(5),1 (in Chinese).李来平,刘燕,张文, 等.中国钼业,2016,40(5),1.26 Philippe C, Shtemenko N, Alexander V. et al. E. U. patent,EP2068894,2010.27 Chen L C, Zhao M X, Xun Q J, et al.Chemical Research, 2016,27(2),195 (in Chinese).陈来成,赵梦溪,徐启杰, 等.化学研究,2016,27(2),195.28 Fan X X, Xing W D, Dong H G, et al.The Chinese Journal of Process Engineering, 2013,13(6),969 (in Chinese).范兴祥,行卫东,董海刚, 等.过程工程学报,2013,13(6),969.29 Wang J K, Meng H Q, Wang Z J, et al.Nonferrous Metals(Extractive Metallurgy), 2014 (5),1 (in Chinese).王靖坤,孟晗琪,王治钧, 等. 有色金属(冶炼部分),2014(5),1.30 Zhong S P, Wu X X, Wang J E, et al.Nonferrous Metals(Extractive Metallurgy), 2018(9),44 (in Chinese).衷水平,吴馨璇,王俊娥, 等. 有色金属(冶炼部分),2018(9),44.31 Wu J H, Su T, Liu G, et al. The Chinese Journal of Process Engineering, 2015,15(3),406 (in Chinese).邬建辉,苏涛,刘刚, 等. 过程工程学报,2015,15(3),406.32 Meng H Q, Wu X, Chen K K, et al. Nonferrous Metals Engineering, 2014,4(4),44 (in Chinese).孟晗琪,吴贤,陈昆昆, 等. 有色金属工程,2014,4(4),44.33 Chen P L, Wei G X.Acta Scientiarum Naturalium Universitatis Nankaiensis, 2011,44(6),76 (in Chinese).陈培丽,魏国侠.南开大学学报(自然科学版),2011,44(6),76.34 Song Z Y, Liu L,Deng L, et al.Journal of Chinese Society for Corrosion and Protection, 2018,38(4),365 (in Chinese).宋增意,刘莉,邓丽, 等.中国腐蚀与防护学报,2018,38(4),365.35 Stoller V,Olbrich A. 中国专利,CN1418985,2003.36 Yang Z P, Li Y H, Tang B L. Hydrometallurgy, 1999(2),9(in Chinese).杨志平,李庸华,唐宝彬.湿法冶金,1999(2),9.37 Liu Y, Deng L, Liu L, et al.Rare Metals, 2017,41(6),678 (in Chinese).刘洋,邓丽,刘莉, 等. 稀有金属,2017,41(6),678.38 Chen K K, Meng H Q, Wu Y Q, et al.Rare Metals and Cemented Carbides, 2016,44(6),26 (in Chinese).陈昆昆,孟晗琪,吴永谦, 等.稀有金属与硬质合金,2016,44(6),26.39 Nebeker N, Hiskey J B. Hydrometallurgy, 2012, 125-126(8), 64.40 Shu Z N, Yang M. Chinese Journal of Chemical Engineering, 2010, 18(3),372.41 Wang H D, Wang S R, Gan M, et al.The Chinese Journal of Nonferrous Metals, 2017,27(6),1302 (in Chinese).王海东,王送荣,甘敏, 等. 中国有色金属学报,2017,27(6),1302.42 Wang F Y, Zou Y, Chu T W. Hydrometallurgy, 2018,37(6),461 (in Chinese).王方元,邹宇,褚泰伟.湿法冶金,2018,37(6),461.43 Srivastava R R,Kim M S, Lee J C, et al. Hydrometallurgy, 2015, 157,33.44 Seo S Y, Choi W S, Yang T J, et al. Hydrometallurgy, 2012, 129-130, 145.45 Hachemaoui A, Belhamel K. International Journal of Mineral Processing, 2017, 161, 7.46 Kumbasar R A. Separation and Purification Technology, 2009, 68(2), 208.47 Li Y P, Li L F, Wang X K.China Molybdenum, 2001(6), 24 (in Chinese).李玉萍, 李莉芬, 王献科. 中国钼业, 2001(6), 24.48 Xiong Y. Bioresource Technology, 2013, 127(1),464.49 Shan W J, Zhang D Y, Wang X, et al.Microporous and Mesoporous Materials, 2019, 278,44.50 Ma G F, Lei N, Guo J L, et al. China Molybdenum, 2012,36(2),4(in Chinese).马高峰,雷宁,郭金亮,等. 中国钼业,2012,36(2),4.51 He H, Dong Z, Pang J, et al.Science of the Total Environment, 2018, 630,570.52 WangY, Wang C. Chinese Chemical Letters, 2018, 29(3), 345.
[1] 徐祺, 王三反, 孙百超. 双膜三室同槽电解金属锰和微粒电解二氧化锰的控制因素[J]. 材料导报, 2020, 34(14): 14016-14022.
[2] 韩雪莹, 刘新利, 吴壮志, 段柏华, 王德志. 含难熔金属涂层的研究进展[J]. 材料导报, 2020, 34(13): 13146-13154.
[3] 邓友生, 蔡梦真, 王一雄, 苏家琳, 孙雅妮. 可回收锚件机理与工程应用研究[J]. 材料导报, 2019, 33(Z2): 473-479.
[4] 郭强, 徐恒元, 何凯, 孙振萍, 李逸. 树脂基复合材料废弃物回收再利用现状及发展趋势[J]. 材料导报, 2019, 33(Z2): 634-638.
[5] 梁光兵, 李艳红, 张远琴, 訾昌毓, 赵文波, 张登峰. 磁响应吸油材料的研究进展[J]. 材料导报, 2019, 33(23): 3999-4007.
[6] 闫霆, 王文欢, 王如竹. 化学吸附储热技术的研究现状及进展[J]. 材料导报, 2018, 32(23): 4107-4115.
[7] 程前, 张婧. 废锂电池负极全组分绿色回收与再生[J]. 材料导报, 2018, 32(20): 3667-3672.
[8] 周头军,李家节,郭诚君,丁云峰,陈金水. 回收制备烧结Nd-Fe-B磁体的磁性能与耐热性能[J]. 《材料导报》期刊社, 2018, 32(2): 180-183.
[9] 刘欢, 华中胜, 何几文, 唐泽韬, 张伟伟, 吕辉鸿. 废弃氧化铟锡中铟的回收技术综述[J]. 《材料导报》期刊社, 2018, 32(11): 1916-1923.
[10] 施麒,马越,毛贺,赖金涛. 应用等径角挤压(ECAP)技术的金属粉末固结和碎屑回收研究现状*[J]. 《材料导报》期刊社, 2017, 31(7): 88-93.
[11] 廖亚龙, 曹磊, 王祎洋, 叶朝. 溶液中镓的提取与分离研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 133-138.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed