Please wait a minute...
材料导报  2021, Vol. 35 Issue (21): 21028-21036    https://doi.org/10.11896/cldb.20050176
  环境催化材料 |
协同催化水解羰基硫和二硫化碳的低温催化剂的研究进展
梁键星1, 李咸伟2, 刘道清2, 顾嘉南1, 孙同华1,3, 贾金平1,4
1 上海交通大学环境与科学工程学院,上海 200240
2 宝山钢铁股份有限公司研究院,上海 200900
3 上海市固体废物处理与资源化工程研究中心,上海 200240
4 上海污染控制与生态安全研究所,上海 200092
A Review of Catalysts with Activities for Simultaneous Hydrolyses of Carbonyl Sulfide and Carbon Disulfide at Low Temperatures
LIANG Jianxing1, LI Xianwei2, LIU Daoqing2, GU Jianan1, SUN Tonghua1,3, JIA Jinping1,4
1 School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Research Institute,Baoshan Iron & Steel Co., Ltd., Shanghai 200900, China
3 Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai 200240, China
4 Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
下载:  全 文 ( PDF ) ( 4358KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钢厂副产煤气是钢铁企业产生的二次能源,但是由于其中含有化学稳定性高的COS和CS2,二次利用困难,部分钢铁企业会将其直接高空排放,这样不仅造成了能源浪费,还造成了环境污染。因此,研究者们开发了多种技术用于脱除COS和CS2,其中水解法脱除废气中的COS和CS2是应用较为广泛的脱硫技术。
然而,目前水解催化剂的使用温度相对较高,而钢厂副产煤气具有温度低、热值低、二氧化碳及氧含量高等特点。因此,近十年来研究者们研发了多种低温水解催化剂,用于COS和CS2的单独催化水解,甚至两种气体的协同催化水解。这些催化剂的成功研发不仅使得水解催化剂的使用温度大幅度降低,而且保持了其较高的水解效率。
COS和CS2单独低温水解催化剂主要包括金属氧化物基催化剂、活性炭基催化剂以及类水滑石基催化剂。其中,金属氧化物基水解催化剂主要以γ-Al2O3和TiO2为载体,并且以TiO2作为载体能更好地抑制水解催化剂中毒;活性炭基水解催化剂可通过调控其活性成分与含量以及提高活性炭载体自身品质来增强其低温水解性能;而类水滑石基水解催化剂则是通过调整其层板金属的组成、制备方法及条件使得其具有优异的低温水解性能。此外,由于活性炭具有特殊的物理化学特性,COS和CS2的协同水解催化剂主要是以活性炭基低温水解催化剂为主。
本文归纳了COS和CS2低温水解催化剂的研究进展,分别对COS和CS2的单独水解催化剂和协同水解催化剂及其催化水解机理进行了介绍,分析了低温水解催化剂研发所面临的问题并提出未来可尝试的研究方向,以期开发更多COS和CS2协同水解的低温催化剂,更重要的是,为今后钢铁行业副产煤气中COS和CS2协同水解低温催化剂的研究方向及工业化应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁键星
李咸伟
刘道清
顾嘉南
孙同华
贾金平
关键词:  钢铁行业  副产煤气  羰基硫  二硫化碳  催化水解  低温催化剂    
Abstract: By-product coal gas from the steel industry is secondary energy produced from the steel enterprise, which is difficult to reuse because it contains COS and CS2 with the high chemical stability. The by-product coal gas is discharged to the atmospheric environment by some steel enterprises because it is difficult to reuse, which leads to the energy-wasting and environmental pollution. Therefore, many technologies have been developed for the removal of COS and CS2, where hydrolysis method is general desulfurization technology for removing COS and CS2 in the waste gas.
However, the operating temperature for the hydrolysis catalysts is relatively high in the present, meanwhile, by-product coal gas from the steel industry has the characteristics of low temperature, low heating value and high content of carbon dioxide and oxygen. Therefore, various low-temperature hydrolysis catalysts have been developed for the single catalytic hydrolysis of COS and CS2, and simultaneously catalytic hydrolysis. The development of these catalysts not only dramatically reduces the operating temperature but remains the excellent hydrolysis efficiency.
The catalysts for the single catalytic hydrolysis of COS and CS2 mainly include metal oxide-based catalysts, activated carbon-based catalysts and hydrotalcite-like based catalysts. The metal oxide-based catalysts mainly use γ-Al2O3 and TiO2 as carries, and TiO2-based catalysts possess excellent anti-poisoning performance. The activated carbon-based catalysts can enhance its hydrolysis performance at low temperature by adjusting active components and its content, and improving the quality of activated carbon. The hydrotalcite-like based catalysts have excellent hydro-lysis catalytic performance at low temperature through tailoring their metal components in the brucite-like layers, preparing methods and conditions. Besides, catalysts for simultaneous catalytic hydrolysis of COS and CS2 are mainly the activated carbon-based catalysts, due to activated carbon has special physicochemical characteristics.
This review concludes the development of COS and CS2 hydrolysis catalysts at low temperature, and introduces the single catalytic hydrolysis, simultaneous catalytic hydrolysis for COS and CS2, and its catalytic mechanism. Meanwhile, the current problems for the development of low-temperature hydrolysis catalysts are analyzed, and the feasible research directions in the future for the different kinds of low-temperature hydrolysis catalysts are proposed, on which to develop more low-temperature catalysts for the simultaneous hydrolysis of COS and CS2. More importantly, this review provides a reference for the research direction and industrial application of the low-temperature catalysts for the simultaneous hydrolysis of COS and CS2 in the by-product coal gas from the steel industry in the future.
Key words:  steel industry    by-product coal gas    carbonyl sulfide    carbon disulfide    catalytic hydrolysis    low-temperature catalyst
               出版日期:  2021-11-10      发布日期:  2021-11-30
ZTFLH:  TB321  
  X511  
基金资助: 国家重点基础研究发展计划项目(2017YFC0210500);国家自然科学基金委面上项目(21876107)
通讯作者:  sunth@sjtu.edu.cn   
作者简介:  梁键星,2016年6月毕业于广东石油化工学院,获得工学学士学位,2019年6月在常州大学石油化工学院化学工艺专业取得硕士学位。现为上海交通大学环境科学与工程学院的博士研究生,在孙同华研究员的指导下进行研究。目前主要研究领域为煤气脱硫。
孙同华,上海交通大学环境与科学工程学院研究员、博士研究生导师。1986年7月本科毕业于江苏化工学院,2001年2月在南京理工大学化工学院应用化学专业取得硕士学位,2004年8月在上海交通大学环境科学与工程学院环境工程专业获得博士学位。先后主持参加多项863项目、国家自然科学基金面上项目、上海市科委重点项目等。主要从事工业废气治理,如煤气脱硫、烟气脱硫和催化氧化VOCs。近年来,在工业废气治理领域发表论文多篇,包括Environmental Science & Technology、Journal of Hazardous Materials和Chemical Engineering Journal等。
引用本文:    
梁键星, 李咸伟, 刘道清, 顾嘉南, 孙同华, 贾金平. 协同催化水解羰基硫和二硫化碳的低温催化剂的研究进展[J]. 材料导报, 2021, 35(21): 21028-21036.
LIANG Jianxing, LI Xianwei, LIU Daoqing, GU Jianan, SUN Tonghua, JIA Jinping. A Review of Catalysts with Activities for Simultaneous Hydrolyses of Carbonyl Sulfide and Carbon Disulfide at Low Temperatures. Materials Reports, 2021, 35(21): 21028-21036.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050176  或          http://www.mater-rep.com/CN/Y2021/V35/I21/21028
1 Wang H Y, Yi H H, Tang X L, et al. Industrial & Engineering Chemistry Research, 2013, 52(27), 9331.
2 Wang X Q, Cheng C, Ma Y X, et al. Materials Reports A: Review Papers, 2017, 31(1), 149 (in Chinese).
王学谦, 程晨, 马懿星, 等. 材料导报:综述篇, 2017, 31(1), 149.
3 Shen L J, Wang G J, Zheng X X, et al. Chinese Journal of Catalysis, 2017, 38(8), 1373.
4 Mi J X, Liu F J, Chen W, et al. ACS Applied Materials & Interfaces, 2019, 11(33), 29950.
5 Svoronos P D N, Bruno T J. Industrial & Engineering Chemistry Research, 2002, 41(22), 5321.
6 Ning P, Xu K, Wang X Q, et al. Materials Reports A: Review Papers, 2015, 29(11), 62 (in Chinese).
宁平, 徐可, 王学谦, 等. 材料导报:综述篇, 2015, 29(11), 62.
7 Uribe-Soto W, Portha J F, Commenge J M, et al. Renewable and Sustaina-ble Energy Reviews, 2017, 74, 809.
8 Mariños R D J, Rojas C S B, Amaro G J, et al. Applied Thermal Engineering, 2020, 169, 114905.
9 Meng H, Wang J J, Wang H, et al. Materials Reports B: Research Papers, 2013, 27(7), 147 (in Chinese).
孟华, 王建军, 王华, 等.材料导报:研究篇, 2013, 27(7), 147.
10 Zhang H X, An C Y, Zhang L S, et al. Natural Gas Chemical Industry, 2019, 44(2), 46 (in Chinese).
张华西, 安楚玉, 张礼树, 等. 天然气化工, 2019, 44(2), 46.
11 Zhang Y Q, Xiao Z B, Ma J X. Applied Catalysis B: Environmental, 2004, 48(1), 57.
12 Liu Y X, Shangguan J, Wang Z X, et al. Chemical Industry and Engineering Progress, 2018, 37(10), 3885 (in Chinese).
刘艳霞, 上官炬, 王泽鑫, 等. 化工进展, 2018, 37(10), 3885.
13 Liu J, Liu D D. Technology and Economic Guide, 2020, 28(2), 64 (in Chinese).
刘佳, 刘丹丹. 科技经济导刊, 2020, 28(2), 64.
14 Wang X Q, Wang F, Chen W, et al. Industrial & Engineering Chemistry Research, 2014, 53(35), 13626.
15 Huang H M, Young N, Williams B P, et al. Green Chemistry, 2008, 10(5), 571.
16 Huang H M, Young N, Williams B P, et al. Catalysis Letters, 2006, 110(3-4), 243.
17 Yin W H, Li K B, Zhao M Z, et al. Natural Gas Chemical Industry, 2019, 44(1), 87 (in Chinese).
殷文华, 李克兵, 赵明正, 等.天然气化工, 2019, 44(1), 87.
18 Zhang Y J, Wang K L. Henan Metallurgy, 2019, 27(4), 31 (in Chinese).
张永杰, 王锴磊. 河南冶金, 2019, 27(4), 31.
19 Chen J, Li C H, Zhao W, et al. Modern Chemical Industry, 2005, 25(S1), 293 (in Chinses).
陈杰, 李春虎, 赵伟, 等. 现代化工, 2005, 25(S1), 293.
20 Wang H N, Shangguan J, Wang X P, et al. Industrial Catalysis, 2007, 15(2), 18 (in Chinese).
王会娜, 上官炬, 王晓鹏, 等. 工业催化, 2007, 15(2), 18.
21 Tian Y, Liu Q L, Ji N, et al. Environmental Engineering, 2018, 36(7), 87 (in Chinese).
田昀, 刘庆岭, 纪娜, 等. 环境工程, 2018, 36(7), 87.
22 Littel R J, Versteeg G F, Van Swaaij W P M. Industrial & Engineering Chemistry Research, 1992, 31(5), 1262.
23 Liu N, Ning P, Li K, et al. Chemical Industry and Engineering Progress, 2018, 37(1), 301 (in Chinese).
刘娜, 宁平, 李凯, 等. 化工进展, 2018, 37(1), 301.
24 Laperdrix E, Justin I, Costentin G, et al. Applied Catalysis B: Environmental, 1998, 17(1), 167.
25 Yu J L, Yin F K, Wang S Y, et al. Fuel, 2013, 108, 91.
26 Li K, Liu G, Gao T Y, et al. Applied Catalysis A: General, 2016, 527, 171.
27 Yue Y H, Zhao X P, Hua W M, et al. Applied Catalysis B: Environmental, 2003, 46(3), 561.
28 Wang G, Sun T H, Zhang H B, et al. Modern Chemical Industry, 2014, 34(1), 60 (in Chinese).
王冠, 孙同华, 张宏波, 等. 现代化工, 2014, 34(1), 60.
29 He E Y, Huang G, Fan H L, et al. Fuel, 2019, 246, 277.
30 Sui R H, Lavery C B, Li D, et al. Applied Catalysis B: Environmental, 2019, 241, 217.
31 Vega E, Lemus J, Anfruns A, et al. Journal of Hazardous Materials, 2013, 258-259, 77.
32 Yi H H, Zhao S Z, Tang X L, et al. Catalysis Communications, 2014, 56, 106.
33 Li K, Song X, Zhang G J, et al. RSC Advances, 2017, 7(64), 40354.
34 Yi H H, He D, Tang X L, et al. Fuel, 2012, 97, 337.
35 He D, Yi H H, Tang X L, et al. Journal of Molecular Catalysis A: Che-mical, 2012, 357, 44.
36 Ning P, Yu L, Yi H H, et al. Journal of Rare Earths, 2010, 28(2), 205.
37 He D, Yi H H, Tang X L, et al. Journal of Rare Earths, 2010, 28, 343.
38 Yi H H, Yu L L, Tang X L, et al. Journal of Central South University of Technology, 2010, 17(5), 985.
39 Wang H Y, Yi H H, Tang X L, et al. Journal of Central South University (Science and Technology), 2011, 42(3), 848 (in Chinese).
王红妍, 易宏红, 唐晓龙, 等. 中南大学学报(自然科学版), 2011, 42(3), 848.
40 Qiu J, Ning P, Wang X, et al. Frontiers of Environmental Science & Engineering, 2014, 10(1), 11.
41 Wang G J, Chen X T, Tian A X, et al. Chemistry, 2017, 80(10), 942 (in Chinese).
王广建, 陈晓婷, 田爱秀, 等. 化学通报, 2017, 80(10), 942.
42 Tang L H, Guo H B, Li K, et al. Advanced Materials Research, 2014, 894, 293.
43 Song X, Sun L N, Li K, et al. Surface and Interface Analysis, 2019, 51(11), 1093.
44 Wang L, Guo Y, Lu G Z. Journal of Natural Gas Chemistry, 2011, 20(4), 397.
45 Wang Q, O'hare D. Chemical Reviews, 2012, 112(7), 4124.
46 Fan G L, Feng L, Evans D G, et al. Chemical Society Reviews, 2014, 43(20), 7040.
47 Zhao S Z, Yi H H, Tang X L, et al. Journal of Rare Earths, 2010, 28, 329.
48 Wei Z, Zhang X, Zhang F L, et al. Environmental Science, 2019, 40(10), 4423 (in Chinese).
魏征, 张鑫, 张凤莲, 等. 环境科学, 2019, 40(10), 4423.
49 Zhao S Z, Yi H H, Tang X L, et al. Chemical Engineering Journal, 2013, 226, 161.
50 Zhao S Z, Yi H H, Tang X L, et al. Catalysis Today, 2019, 327, 161.
51 Yi H H, Zhao S Z, Tang X L, et al. Catalysis Communications, 2011, 12(15), 1492.
52 Zhao S Z, Yi H H, Tang X L, et al. Materials Chemistry and Physics, 2018, 205, 35.
53 Wang H Y, Yi H H, Ning P, et al. Chemical Engineering Journal, 2011, 166(1), 99.
54 Li Q, Yi H H, Tang X L, et al. Chemical Engineering Journal, 2016, 284, 103.
55 Guo H B, Tang L H, Li K, et al. RSC Advances, 2015, 5(26), 20530.
56 Wang H Y, Yi H H, Tang X L, et al. Applied Clay Science, 2012, 70, 8.
57 Mi J X, Chen X P, Zhang Q Y, et al. Chemical Communication, 2019, 55(63), 9375.
58 Zhao S Z, Yi H H, Tang X L, et al. Journal of Hazardous Materials, 2018, 344, 797.
59 Zhao S Z, Yi H H, Tang X L, et al. Ultrasonics Sonochemistry, 2016, 32, 336.
60 Yi H H, Wang H Y, Tang X L, et al. Industrial & Engineering Chemistry Research, 2011, 50(23), 13273.
61 Zhao S Z, Yi H H, Tang X L, et al. Catalysis Today, 2019, 355, 415.
62 Yi H H, Li K, Tang X L, et al. Chemical Engineering Journal, 2013, 230, 220.
63 Song X, Ning P, Wang C, et al. Chemical Engineering Journal, 2017, 314, 418.
64 Liu Q, Ke M, Yu P, et al. Petrochemical Technology, 2016, 45(5), 552 (in Chinese).
刘强, 柯明, 于沛, 等. 石油化工, 2016, 45(5), 552.
65 Ning P, Li K, Yi H H, et al. Journal of Physical Chemistry C, 2012, 116(32), 17055.
66 Sun X, Ning P, Tang X L, et al. Journal of Energy Chemistry, 2014, 23(2), 221.
67 Li K, Song X, Ning P, et al. Energy Technology, 2015, 3(2), 136.
68 Sun X, Ruan H, Song X, et al. RSC Advances, 2018, 8(13), 6996.
69 Song X, Li K, Ning P, et al. Applied Surface Science, 2017, 425, 130.
70 Liu W J, Jiang H, Yu H Q. Chemical Reviews, 2015, 115(22), 12251.
71 George Z M. Journal of Catalysis, 1974, 35(2), 218.
72 Zhao X P. CS2 catalytic hydrolysis and VOC photocatalytic oxidation over nano-oxide. Master's Thesis, Fudan University, China, 2003 (in Chinese).
赵西平. 纳米氧化物与CS2催化水解和VOC光催化氧化. 硕士学位论文, 复旦大学, 2003.
73 Guo X F. Study on the adsorption behavior and hydrolysis mechanism of CS2 on alumina-based catalyst. Master's Thesis, Taiyuan University of Technology, China, 1996 (in Chinese).
郭晓汾. CS2在氧化铝基催化剂上的吸附行为和水解机理的研究. 硕士学位论文, 太原工业大学, 1996.
74 Li K. Research on development of catalyst for simulataneous catalysitc hydrolysis of COS and CS2 and the reaction mechanism. Ph.D. Thesis, Kunming University of Science and Technology, China, 2013 (in Chinese).
李凯. COS、CS2水解催化剂的开发及机理研究. 博士学位论文, 昆明理工大学, 2013.
75 Han S, Yang H, Ning P, et al. Research on Chemical Intermediates, 2018, 44(4), 2637.
76 Song X, Ning P, Wang C, et al. Applied Surface Science, 2017, 414, 345.
77 Li K, Song X, Zhu T T, et al. Environmental Pollution, 2018, 232, 615.
78 Song X, Chen X, Sun L N, et al. Chemical Engineering Journal, 2020, 399, 125764.
79 Ning P, Song X, Li K, et al. Scientific Reports, 2017, 7(1), 14452.
[1] 伊志豪, 孙杰, 李吉刚, 周添, 卫寿平, 解洪嘉, 杨育霖. 花球状CuO/CeO2材料上HCN的催化消除[J]. 材料导报, 2021, 35(8): 8017-8022.
[2] 王学谦, 程 晨, 马懿星, 宁 平, 徐 可, 王郎郎, 张英杰. 直流电晕放电净化羰基硫以及其产物分析[J]. 材料导报, 2017, 31(1): 149-154.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed