Please wait a minute...
材料导报  2017, Vol. 31 Issue (1): 149-154    https://doi.org/10.11896/j.issn.1005-023X.2017.01.021
  环境修复材料 |
直流电晕放电净化羰基硫以及其产物分析
王学谦,程 晨,马懿星,宁 平,徐 可,王郎郎,张英杰
昆明理工大学环境科学与工程学院,昆明 650093
Removal of Carbonyl Sulfide by DC Corona Discharge and Analysis of the Product
WANG Xueqian, CHENG Chen, MA Yixing, NING Ping, XU Ke, WANG Langlang, ZHANG Yinjie
Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 1588KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 使用直流电晕放电净化羰基硫(COS),研究不同O2浓度、不同相对湿度以及粉尘存在与否对COS处理效果和被处理后主要产物含量的影响。实验结果表明,随着O2浓度增加,COS去除效率降低,出口气中SO2、总硫(The totals except SO2,记为TS′)生成率均减小,COS转化量与CO、CO2总量保持平衡,CO、CO2浓度降低,CO生成率降低,CO2生成率增加。相对湿度对COS处理效果影响较小,但影响电源击穿电压,相对湿度增加,出口气中总硫生成率增加,SO2生成率减小,出口气中CO生成率降低,而CO2生成率增加,CO浓度降低,CO2浓度增加。在实验过程中加入粉尘后,COS处理效果有一定提高,出口气中SO2生成率显著减少,总硫生成率增加,出口气中CO浓度降低,生成率降低,CO2浓度增加,生成率增加。低氧气浓度、低湿度以及粉尘存在的情况下,COS处理效果最好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王学谦
程 晨
马懿星
宁 平
徐 可
王郎郎
张英杰
关键词:  直流电晕等离子体  羰基硫  自由基  尾气    
Abstract: The effects of different concentration of O2, different relative humidity and whether if the existence of dust on the concentration of the main product and removal efficiency of carbonyl sulfide (COS) were investigated through direct current corona discharge. The experiment results show that the removal efficiency of carbonyl sulfide (COS) and the production date of sulfur dio-xide (SO2),TS′ were lower with the increase of oxygen(O2); COS inversion quantity was equal to the gross which CO and CO2. The concentration of CO and CO2 were decreased, the production rate of CO was decreased and CO2 was increased. Relative humidity has affected the removal efficiency of COS less,but it has impact on breakdown voltage. With the increase of relative humidity, SO2 formation rate was decreased and TS′ formation rate was increased. The concentration of CO let up and CO2 was increased. The production rate of CO was decreased and CO2 was increased. After add dust in the experiment process, the removal efficiency of COS was increased in some extent, the production rate of SO2 significantly was decreased and TS′ formation rate was in addition. The concentration of CO was decreased and CO2 was increased. The production rate of CO was decreased and CO2 was increased. The remaval efficiency of COS was the best in the condition of low oxygen, low humidity and the exist of dust.
Key words:  direct current corona plasma    carbonyl sulfide    radical    off-gas
               出版日期:  2017-01-10      发布日期:  2018-05-02
ZTFLH:  X511  
基金资助: 国家自然科学基金(51268021;51368026;51568027);云南省高新技术产业发展项目;西部典型行业环境污染控制协同创新中心开放基金(XTCX2014-05)
作者简介:  王学谦:男,1975年生,教授,博士研究生导师,研究方向为大气污染控制 E-mail:wxqian3000@aliyun.com 宁平:通讯作者,男,1958年生,博士,教授,博士研究生导师,研究方向为大气污染控制 E-mail:ningping21@163.com
引用本文:    
王学谦, 程 晨, 马懿星, 宁 平, 徐 可, 王郎郎, 张英杰. 直流电晕放电净化羰基硫以及其产物分析[J]. 材料导报, 2017, 31(1): 149-154.
WANG Xueqian, CHENG Chen, MA Yixing, NING Ping, XU Ke, WANG Langlang, ZHANG Yinjie. Removal of Carbonyl Sulfide by DC Corona Discharge and Analysis of the Product. Materials Reports, 2017, 31(1): 149-154.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.01.021  或          http://www.mater-rep.com/CN/Y2017/V31/I1/149
1 Whelan M E, Min D H, Rhew R C. Salt marsh vegetation as a carbonyl sulfide (COS) source to the atmosphere [J]. Atmospheric Environ,2013,73(6):131.
2 Mondal S, Teja A U, Singh P C. Effect of microhydration on the atmospherically important metastable carbonyl sulfide anion: Structure, energetic, and infrared study [J]. Int J Quantum Chem,2015,115(12):785.
3 Liu J F, Liu Y C, Xue L, et al. Oxygen poisoning mechanism of ca-talytic hydrolysis of OCS over Al2O3 at room temperature[J]. Acta Physico-Chimica Sinica,2007,23(7):997.
4 Li K, Song X, Ning P, et al. Energy utilization of yellow phospho-rus tail gas: Simultaneous catalytic hydrolysis of carbonyl sulfide and carbon disulfide at low temperature [J]. Energy Technol,2014,3(2):136.
5 Zhao S Z, Yi H H, Tang X L, et al. Low temperature hydrolysis of carbonyl sulfide using Zn-Al hydrotalcite-derived catalysts[J]. Chem Eng J,2013,226(12):161.
6 Sun X, Ning P, Tang X L, et al. Simultaneous catalytic hydrolysis of carbonyl sulfide and carbon disulfide over Al2O3-K/CAC catalyst at low temperature[J]. J Energy Chem,2014,23(2):221.
7 Svoronos P D N,Bruno T J.Carbonyl sulfide:A review of its chemistry and properties[J].Ind Eng Chem Res,2002,41(22):5321.
8 Rhodes C,Riddel S A,West J, et al. The low-temperature hydrolysis of carbonyl sulfide and carbon disulfide:A review[J].Catal Today,2000,59(3-4):443.
9 Wang H Y, Yi H H, Tang X L, et al. Catalytic hydrolysis of carbonyl sulfide over modified activated carbon [J]. J Central South University,2011,42(3):848(in Chinese).
王红妍,易红宏,唐晓龙,等.改性活性炭催化水解羰基硫[J].中南大学学报,2011,42(3):848.
10 Li X X, Liu Y Y, Wei X H. Technology for carbonyl sulfide removal[J]. Modern Chem Ind,2004,24(8):19(in Chinese).
李新学,刘迎新,魏雄辉.羰基硫脱除技术[J].现代化工,2004,24(8):19.
11 Mok Y S, Nam I S. Positive pulsed corona discharge process for si-multaneous removal of SO2 and NOx from iron-ore sintering flue gas [J]. IEEE Trans Plasma Sci,1999,27(4):1188.
12 Reddy E L, Biju V M, Subrahmanyam C. Production of hydrogen and sulfur from hydrogen sulfide assisted by nonthermal plasma [J]. Appl Energy,2012,95(2):87.
13 Yan X, Sun Y F, Zhu T L, et al. Conversion of carbon disulfide in air by non-thermal plasma [J]. J Hazard Mater,2013,261(1):669.
14 Ning Pin, Xu Ke, Wang Xueqian, et al. Research progress of removal sulfide odors by the non-thermal plasma[J]. Mater Rev: Rev,2015,29(11):62(in Chinese).
宁平,徐可,王学谦,等.低温等离子体技术处理含硫恶臭气体的研究进展[J].材料导报:综述篇,2015,29(11):62.
15 Wang M Y, Zhu T L, Luo H J, et al. Oxidation of gaseous elemental mercury in a high voltage discharge reactor [J]. J Environ Sci,2009,21(12):1652.
16 An G J, Sun Y F, Zhu T L, et al. Degradation of phenol in mists by a non-thermal plasma reactor [J]. Chemosphere,2011,84(9):1296.
17 Naldco J,Goumri A,Maxshall P. A kinetic study of the reaction of atomic oxygen with SO2[J].Proceedings Combustion Institute,2005,30(1):1219.
18 Yan K P,Hui H X,Cui M, et al.Corona induced non-thermal plasmas:Fundamental study and industrial applications [J]. J Electrostat,1998,44(1-2):17.
19 Daga Nkar M V, Beenuekers A A C M, Pangarkar V G. Absorption of sulfur dioxide into aqueous reactive slurries of calcium and magnesium hydroxide in a stirred cell[J].Chem Eng Sci,2001,56(3):1095.
20 Ma Y X, Wang X Q, Ning P. Conversion of COS by corona plasma and the effect of simultaneous removal of COS and dust[J]. Chem Eng J,2016,290:328.
21 Chen H, Kong L D, Chen J M, et al. Heterogeneous uptake of carbonyl sulfide on hematite and hematite-NaCl mixtures [J]. Environ Sci Technol,2007,41(18):6484.
22 Ameomiya Y, Morikawa Y, Pleizier G. Infrared spectroscopy of C18O2 on alumina [J]. J Catal,1977,46(3):431.
23 Liao L F,Lien C F.FTIR study of adsorption and photoassisted oxy-gen isotopic exchange of carbon monoxide, carbon dioxide, carbo-nate, and formate on TiO2[J]. J Phys Chem B,2002,106(43):11240.
24 Li X X,Xu L,Gao M G, et al. Fourier transform infrared greenhouse analyzer for gases and carbon isotope ratio [J]. Optics Precision Eng,2014,22(9):2359.
25 Zeng Y F, Liu Z L, Qin Z Z, et al. Infrared study on adsorption of O3 at SnO2 surface [J]. Spectroscopy Spectral Analy,2008,28(5):1035.
26 Zhang J B, Han F, Wei X H, et al. Spectral studies of hydrogen bonding and interaction in the absorption processes of sulfur dioxidein poly (ethylene glycol) 400+water binary system [J]. Ind Eng Chem Res,2010,49(5):2025.
27 Subrahmanyam C, Magureanu M, Renken A, et al. Catalytic abatement of volatile organic compounds assisted by non-thermal plasma Part 1. A novel dielectric barrier discharge reactor containing catalytic electrode [J]. Appl Cataly B,2006,65(1-2):150.
28 Paillol J, Esprl P, Reess T, et al. Negative corona in air at atmospheric pressure due to a voltage impulse [J]. J Appl Phys,2002,91(9):5614.
29 Wei Gaoen, Gao Xiang, Luo Zhongyang. Removal of NOx from flue gases by moist air as radical source[J]. China Environ Sci,2004,24(4):492(in Chinese).
魏高恩,高翔,骆仲泱.湿空气作为自由基源物质脱除烟气中的NOx[J].中国环境科学,2004,24(4):492.
30 Zou F, Wu Z C, Kang Y. Electrochemical process of heteroatom degradation by DC corona discharge [J]. CIESC J,2010,61:91(in Chinese).
邹芳,吴祖成,康颖.直流电晕放电降解杂原子有机物的电化学过程[J].化工学报,2010,61(S1):91.
31 Zheng W. Optical study of OH radicals produced by DC corona discharge [D]. Dalian: Dalian University of Technology,2007(in Chinese).
郑维.直流电晕放电OH自由基发射光谱研究[D].大连:大连理工大学,2007.
32 Cao W. Research on simultaneous conversion of NO and SO2 in flue gas by pulsed discharge [D]. Hangzhou: Zhejiang University,2008(in Chinese).
曹玮.脉冲放电协同转化烟气中NO、SO2的研究[D].杭州:浙江大学,2008.
33 Shi X G, Pang Y J, Xu X C. Experimental study on improving the desulfurization efficiency of calcium desulfurizing agent mixed with fly ash[J]. J Eng Thermophys,1992,13(4):443(in Chinese).
施学贵,庞亚军,徐旭常.掺加粉煤灰提高含钙脱硫剂的烟气脱硫率的实验研究[J].工程热物理学报,1992,13(4):443.
[1] 刘新华, 储兆洋, 李永, 郑宏亮, 方寅春. 含聚甲基丙烯酸二甲氨基乙酯刷的羽毛接枝共聚物的制备及性能[J]. 材料导报, 2019, 33(2): 342-346.
[2] 阳锋, 杨淑颐, 魏子斐, 王莉淋. 过硫酸氢盐催化材料(Co3O4/ACF)的制备及应用[J]. 材料导报, 2018, 32(20): 3654-3659.
[3] 张耀君, 余淼, 张力, 张懿鑫, 康乐. 一种新型石墨烯-粉煤灰基地质聚合物复合材料的制备及光催化应用*[J]. CLDB, 2017, 31(9): 50-56.
[4] 苗青, 曲建波, 张斐斐, 田荟琳, 张海涛. 可控活性自由基聚合制备端基官能化聚合物研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 101-108.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed