Please wait a minute...
材料导报  2021, Vol. 35 Issue (1): 1011-1022    https://doi.org/10.11896/cldb.19120158
  材料与可持续发展( 四) ———材料再制造与废弃物料资源化利用? |
废旧三元锂离子电池正极材料回收技术研究进展
田庆华1,2,3, 邹艾玲1,2,3, 童汇1,4,5, 喻万景1, 张佳峰1, 郭学益1,2,3
1 中南大学冶金与环境学院,长沙 410083
2 有色金属资源循环利用湖南省重点实验室,长沙 410083
3 有色金属资源循环利用湖南省工程研究中心,长沙 410083
4 难冶有色金属资源高效利用国家工程实验室,长沙 410083
5 先进电池材料教育部工程技术研究中心, 长沙 410083
Research Progress on Recycling Technology of Cathode Materials for Spent Ternary Lithium-ion Batteries
TIAN Qinghua1,2,3, ZOU Ailing1,2,3, TONG Hui1,4,5, YU Wanjing1, ZHANG Jiafeng1, GUO Xueyi1,2,3
1 School of Metallurgy and Environment, Central South University, Changsha 410083, China
2 Hunan Key Laboratory of Nonferrous Metal Resources Recycling, Changsha 410083, China
3 Hunan Engineering Research Center of Nonferrous Metal Resources Recycling, Changsha 410083, China
4 National Engineering Laboratory for High-Efficiency Recovery of Refractory Nonferrous Metals, Central South University, Changsha 410083, China
5 Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 6643KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 三元锂离子电池因其性能优越,在国内外便携式电子设备和新能源汽车中得到广泛应用。随着对锂离子电池需求量的不断增大,大量的锂离子电池将迎来“退役”高峰期。为实现有价金属资源的循环利用,降低固体废物处理对环境的影响,废旧锂离子电池的回收利用受到了广泛的关注。
   通过对三元锂离子电池进行资源化回收利用,可以获得有价金属或直接制备电池材料。为了提高物料的有效回收率,通常采用预处理的方法来分离集流体和正极活性材料,实现物料的有效分离及进一步的后处理。然后,采用冶金处理的方法从正极活性材料中提取金属和分离杂质,其包括高温冶金和湿法冶金处理工艺。最后,结合材料合成的方法进一步制备得到电池材料或化合物。在现阶段的研究中,高温冶金过程面临着物料损耗大、能耗高、环境不友好等问题;湿法冶金过程存在酸耗大、除杂效率低、工艺流程长等问题。正极材料的再生过程、回收成本以及再合成材料的性能是限制其应用的重要因素。
   本文主要介绍了废旧三元锂离子电池回收过程及方法,包括预处理、高温冶金、湿法冶金、正极材料再生等,分析比较了其存在的主要问题,为废旧三元锂离子电池的资源化技术发展提供参考。最后,提出了废旧三元锂离子电池正极材料的回收应向绿色环保、短流程和低能耗的方向发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田庆华
邹艾玲
童汇
喻万景
张佳峰
郭学益
关键词:  三元正极材料  预处理  高温冶金  浸出  分离  再合成    
Abstract: Lithium-ion batteries are widely used in new energy vehicles at home and abroad due to superior performance. With the increasing demand for lithium-ion batteries, a large number of lithium-ion batteries will inevitably be retired in the near future. In order to realize the recycling of valuable metal resources and reduce potential environmental impacts of solid waste disposal, a great deal of attention has been paid to the deve-lopment of an efficient process for recycling spent ternary lithium-ion batteries.
Valuable metals or battery materials can be obtained by recycling ternary lithium-ion batteries. In order to improve the recovery rate of materials, a pretreatment method is usually used to separate the current collectors and the cathode materials to achieve effective separation of materials and the further post-processing. Then, metallurgical treatment is used to extract metals and separate impurities from the cathode materials, which includes high temperature metallurgical and hydrometallurgical treatment processes. Finally, battery materials or compounds are further prepared by using the synthesis methods of materials. At the current stage of research, high-temperature metallurgical processes have the problems such as large material loss, high energy consumption, and unfriendly environment; hydrometallurgical processes have the problems such as large acid consumption, low impurity removal efficiency, and long process flows. The regeneration process of cathode materials, the cost of recycling, and the performances of resynthesized materials are the important factors that limit the application.
In this paper, we review the recycling technologies of spent ternary lithium-ion batteries, including pretreatment, pyrometallurgy, hydrometallurgy, and cathode material regeneration. We compare the merit and demerit of the above methods, providing references for the development of cathode material recovery technologies in the future and putting forward the prospects and direction of the recycling of spent lithium-ion batteries.
Key words:  ternary cathode material    pretreatment    pyrometallurgy    leaching process    separation    regeneration
               出版日期:  2021-01-10      发布日期:  2021-01-19
ZTFLH:  X7  
基金资助: 国家优秀青年科学基金(51922108);国家自然科学基金(51502350);湖南省杰出青年科学基金(2019JJ20031)
作者简介:  田庆华,中南大学教授,博士研究生导师。国家优秀青年基金、湖南省杰出青年基金获得者,入选“湖湘青年英才”、“湖湘青年科技创新人才”、湖南省青年骨干教师、中南大学“升华育英人才”等人才计划。出版学术专著、科普读物各1部,参编论著2部,申请专利78项,获得授权发明专利50项,发表论文100余篇,SCI、EI收录96篇次,主持国家国际科技合作专项、国家自然科学基金面上项目/青年基金、湖南省重点研发计划、湖南省自然科学基金、湖南省环保科技专项及企业科技攻关项目15项,参与国家自然科学基金重点项目、省市重点科技计划及企业攻关课题18项,获国家科技进步二等奖2项,省部级科技进步一等奖5项。主要研究方向为难处理有色金属资源高效分离与提取、有色金属再生资源循环利用、材料制备与应用。
童汇,中南大学副教授,硕士研究生导师。日本九州大学博士毕业,美国纽约大学博士后;纽约科学院会员,中国有色金属学会会员,宁乡市新材料制造产业专家委员会委员,美国牙科研究协会会员等。主要研究方向为新能源电池材料、废旧电池回收及金属资源综合利用和无机功能材料。主持多项国家自然科学基金等项目,在Nano EnergyJournal of Materials Chemistry AACS Applied Materials & Interfaces等国际重要期刊上发表SCI学术论文40余篇,并作为多种国际学术期刊的审稿人。
郭学益,中南大学副校长,教授,博士研究生导师。教育部“长江学者”特聘教授,国务院政府特殊津贴获得者, 国务院学科评议组成员,国家“百千万人才工程” 入选者,国家有突出贡献的中青年专家。先后主持完成包括国家及省部科技计划项目、国家自然科学面上/重点基金、企业横向合作等数十项课题研究。主要研究方向: 资源循环利用及环境材料、有色金属复杂资源高效提取,现已出版专著4部,发表论文200余篇,其中120余篇次被SCI、EI、ISTP检索;共申请国家专利50余项,其中授权发明专利23项、实用新型专利11项;获国家科技进步奖2项,省部级科技进步奖9项。
引用本文:    
田庆华, 邹艾玲, 童汇, 喻万景, 张佳峰, 郭学益. 废旧三元锂离子电池正极材料回收技术研究进展[J]. 材料导报, 2021, 35(1): 1011-1022.
TIAN Qinghua, ZOU Ailing, TONG Hui, YU Wanjing, ZHANG Jiafeng, GUO Xueyi. Research Progress on Recycling Technology of Cathode Materials for Spent Ternary Lithium-ion Batteries. Materials Reports, 2021, 35(1): 1011-1022.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120158  或          http://www.mater-rep.com/CN/Y2021/V35/I1/1011
1 Dehghani-Sanij A R, Tharumalingam E, Dusseault M B, et al. Renewable and Sustainable Energy Review,2019,104,192.
2 Ordoñez J, Gago E J, Girard A. Renewable and Sustainable Energy Reviews,2016,60,195.
3 Yang Y, Song S, Lei S, et al. Waste Management,2019,85,529.
4 Gu F, Guo J, Yao X, et al. Journal of Cleaner Production,2017,161,765.
5 https://www.variantmarketresearch.com/report-categories/semiconductor-electronics/lithium-ion-battery-market.
6 MiaoY, Hynan P, von Jouanne A, et al. Energies,2019,12(6),1074.
7 Natarajan S, Aravindan V. Advanced Energy Materials,2018,8(33),1802303.
8 Ojanen S, Lundström M, Santasalo-Aarnio A, et al. Waste Management,2018,76,242.
9 Swain B. Journal of Chemical Technology & Biotechnology,2018,93(2),311.
10 Xue Y, Wang Z, Zheng L, et al. Scientific Reports,2015,5(1),13299.
11 Zenga X, Lia J, Singh N. Environmental Science and Technology,2014,10(44),1129.
12 Zhang W, Xu C, He W, et al. Waste Management & Research,2018,36(2),99.
13 Zheng Z, Chen M, Wang Q, et al. ACS Sustainable Chemistry & Engineering,2018,6(11),13977.
14 Yun L, Sandoval J, Zhang J, et al. Journal of Electrochemical Energy Conversion and Storage,2019,16(2),21011.
15 Guo Y, Li F, Zhu H, et al. Waste Management,2016,51,227.
16 Takacova Z, Havlik T, Kukurugya F, et al. Hydrometallurgy,2016,163,9.
17 Chu S, Cui Y, Liu N. Nature Materials,2017,16,16.
18 Barik S P, Prabaharan G, Kumar B. Waste Management,2016,51,222.
19 Weng Y, Xu S, Huang G, et al. Journal of Hazardous Materials,2013,246-247,163.
20 Chen L, Tang X, Zhang, Y, et al. Hydrometallurgy,2011,108,80.
21 Li L, Bian Y, Zhang X, et al. Waste Management,2018,71,362.
22 He L, Sun S, Song X, et al. Waste Management,2015,46,523.
23 Liu K, Zhang F. Journal of Hazardous Materials,2016,316,19.
24 Li L, Zhai L, Zhang X, et al. Journal of Power Sources,2014,262,380.
25 Hanisch C, Loellhoeffel T, Diekmann J, et al. Journal of Cleaner Production,2015,108,301.
26 Yang Y, Huang G, Xu S, et al. Hydrometallurgy,2016,165,390.
27 Chen Y, Liu N, Hu F, et al. Waste Management,2018,75,469.
28 Ferreira D A, Prados L M Z, Majuste D, et al. Journal of Power Sources,2009,187(1),238.
29 Senć anski J, Bajuk-Bogdanović D, Majstorović D, et al. Journal of Power Sources,2017,342,690.
30 Ahmed S, Nelson P A, Gallagher K G, et al. Journal of Power Sources,2016,322,169.
31 Yang L, Xi G, Xi Y. Ceramics International,2015,41(9),11498.
32 Sun L. A novel reclamation process for spent lithium-ion batteries. Master's Thesis, Central South University, China,2012(in Chinese).
孙亮.废旧锂离子电池回收利用新工艺的研究.硕士学位论文,中南大学,2012.
33 Ren G, Xiao S, Xie M, et al. Transactions of Nonferrous Metals Society of China,2017,27(2),450.
34 Georgi-Maschler T, Friedrich B, Weyhe R, et al. Journal of Power Sources,2012,207,173-182.
35 Liu P, Xiao L, Tang Y, et al. Journal of Thermal Analysis and Calorimetry,2019,136(3),1323.
36 Xiao J, Li J, Xu Z. Environmental Science & Technology,2017,51(20),11960.
37 Wang R C, Lin Y C, Wu S H. Hydrometallurgy,2009,99(3),194.
38 Kang J, Sohn J, Chang H, et al. Advanced Powder Technology,2010,21,175.
39 Lee C K, Rhee K. Hydrometallurgy,2003,68,5.
40 Chen X, Ma H, Luo C, et al. Journal of Hazardous Materials,2017,326,77.
41 Chen X, Fan B, Xu L, et al. Journal of Cleaner Production,2016,112,3562.
42 Zeng X, Li J. Journal of Hazardous Materials,2015,295,112.
43 Gao W, Song J, Cao H, et al. Journal of Cleaner Production,2018,178,833.
44 Yao Y, Zhu M, Zhao Z, et al. ACS Sustainable Chemistry & Engineering,2018,6,13611.
45 Meshram P, Pandey B D, Mankhand T R. Chemical Engineering Journal,2015,281,418.
46 Huang X Z, Chu Z, Ji Z G, et al. Chinese Journal Rare Metals,China,2018(in Chinese).
黄孝振,徐政,纪仲光,等.稀有金属,2018.
47 Zheng X, Zhu Z, Lin X, et al. Engineering,2018,3(4),361.
48 He L, Sun S, Mu Y, et al. ACS Sustainable Chemistry & Engineering,2016,5,714.
49 Chen X, Zhou T. Waste Management & Research,2014,32(11),1083.
50 Yao L, Yao H, Xi G, et al. Royal Society of Chemistry Advance,2016,6,17947.
51 He L, Sun S, Song X, et al. Waste Management,2017,64,171.
52 Zhang X, Cao H, Xie Y, et al. Separation and Purification Technology,2015,150,186.
53 Zou H, Gratz E, Apelian D, et al. Green Chemistry,2013,15(5),1183.
54 Meshram P, Abhilash, Pandey B D. The Minerals, Metals and Materials Society,2016,68(10),2613.
55 Sun C, Xu L, Chen X, et al. Waste Management & Research,2018,36(2),113.
56 Li L, Bian Y, Zhang X, et al. Journal of Power Sources,2018,377,70.
57 Gao W, Song J, Cao H, et al. Journal of Cleaner Production,2018(178),833.
58 Wu C, Li B, Yuan C, et al. Waste Management,2019,93,153.
59 Ku H, Jung Y, Jo M, et al. Journal of Hazardous Materials,2016,313,138.
60 Wang H, Huang K, Zhang Y, et al. ACS Sustainable Chemistry & Engineering,2017,5(12)11489.
61 Zheng X, Gao W, Zhang X, et al. Waste Management,2017,60,680.
62 Meng X, Han K N. Mineral Processing and Extractive Metullargy Review,1996,1(16),23.
63 Mishra D, Srivastava R R, Sahu K K, et al. Hydrometallurgy,2011,109(3-4),215.
64 Meng K, Cao Y, Zhang B, et al. ACS Sustainable Chemistry & Enginee-ring,2019,7,7750.
65 Zhang P, Yokoyama T, Itabashi O, et al. Hydrometallurgy,1998,47(2),259.
66 Kang J, Senanayake G, Sohn J, et al. Hydrometallurgy,2010,100(3-4),168.
67 Mantuano D P, Dorella G, Elias R C A, et al. Journal of Power Sources,2006,159(2),1510.
68 Suzuki T, Nakamura T, Inoue Y, et al. Separation and Purification Technology,2012,98,396.
69 Wang F, He F, Zhao J, et al. Separation and Purification Technology,2012,93,8.
70 Chen W, Ho H. Metals,2018,8(5),321.
71 Vasilyev F, Virolainen S, Sainio T. Separation and Purification Technology,2019,210,530.
72 Nguyen V T, Lee J, Jeong J, et al. Metals and Materials International,2014,20(2),357.
73 Wang F, Sun R, Xu J, et al. RSC Advances,2016,6,85303.
74 Hong H S, Kim D W, Choi H L, et al. Archives of Metallurgy and Mate-rials,2017,62(2),1011.
75 Chen X, Zhou T, Kong J, et al. Separation and Purification Technology,2015,141,76.
76 Sattar R, Ilyas S, Bhatti H N, et al. Separation and Purification Techno-logy,2019,209,725.
77 Prabaharan G, Barik S P, Kumar N, et al. Waste Management,2017,68,527.
78 Lupi C, Pasquali M. Minerals Engineering,2003,16(6),537.
79 Yang Y, Xu S, He Y. Waste Management,2017,64,219.
80 Sa Q G E H M. Journal of Power Sources,2015,82,140.
81 He L, Sun S, Yu J. Ceramics International,2018,44(1),351.
82 Zhang S, Deng C, Fu B L, et al. Powder Technology,2010,198(3),373.
83 Yao L, Fenga Y, Xi G. RSC Advances,2015,5,44107.
84 Yao L, Yao H, Xi G, et al. Royal Society of Chemistry Advance,2016,17947.
85 Meng X, Hao J, Cao H, et al. Waste Management,2019,84,54.
86 Zhou H, Zhao X, Yin C, et al. Electrochim Acta,2018,291,142.
[1] 刘晓琦, 张廷安, 刘燕, 赵昕昕. 壳聚糖膜在渗透汽化中的研究进展[J]. 材料导报, 2021, 35(1): 1224-1231.
[2] 吴坚, 李建营, 李绍敏, 刘昊. 均匀沉淀法助力Li2ZrO3包覆LiNi0.85Co0.1Mn0.05O2提升电化学性能[J]. 材料导报, 2020, 34(6): 6015-6019.
[3] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
[4] 杨福生, 张妍, 刘小斌, 陈永哲, 杨武. 种子生长法构筑超疏水-超亲油滤纸及其在油水分离中的应用[J]. 材料导报, 2020, 34(4): 4132-4136.
[5] 胡丙升, 王宏, 宋俊超, 魏亮, 岳世松, 贾金鑫, 史长亮, 杨蕾. 煤系高岭土中残留炭的分离回收与材料化利用研究[J]. 材料导报, 2020, 34(24): 24068-24073.
[6] 李少杰, 闫军, 杜仕国, 鲁彦玲, 蔡军锋. 聚脲弹性体微相分离研究及主要进展[J]. 材料导报, 2020, 34(21): 21205-21210.
[7] 陈首, 石少卿, 何秋霖, 李季. 金属网增强混凝土抗冲击性能的试验研究与数值模拟[J]. 材料导报, 2020, 34(20): 20046-20052.
[8] 李兴建, 白宝仕, 刘升, 苗玉杰, 郑朝晖, 丁小斌. 具有相分离结构的PMMA/PEG半互穿网络形状记忆高分子[J]. 材料导报, 2020, 34(2): 2142-2146.
[9] 刘帅卓, 张颖, 范雷倚, 张骞, 周莹. 活性炭/聚四氟乙烯改性三聚氰胺海绵及其在油水分离中的应用[J]. 材料导报, 2020, 34(17): 17099-17104.
[10] 徐兰芳, 王锋, 于英豪, 涂伟萍. 超亲水/水下超疏油膜功能材料及其研究进展[J]. 材料导报, 2020, 34(17): 17105-17114.
[11] 姚庆达, 温会涛, 杨长凯, 梁永贤, 王小卓, 但卫华. 多层氧化石墨烯膜的结构、性能及在水处理中的应用进展[J]. 材料导报, 2020, 34(15): 15047-15058.
[12] 牛润萍, 庚立志, 范莹莹. 分离膜在膜液体除湿中的应用进展[J]. 材料导报, 2020, 34(15): 15069-15074.
[13] 杨荣周, 徐颖, 陈佩圆. 养护湿度对橡胶水泥砂浆动态压缩破坏特征及能量耗散的影响[J]. 材料导报, 2020, 34(14): 14070-14078.
[14] 高丰, 王会才, 任瑞丽. 超亲水-超疏油油水分离材料的研究进展[J]. 材料导报, 2020, 34(13): 13022-13027.
[15] 吕强, 杨春利, 陈红, 马欣宇, 陈喜, 张强, 杜晶. Ni-BaCe0.7Y0.3-xTaxO3-δ(x=0,0.05,0.1)金属陶瓷氢分离膜的氢渗透性能[J]. 材料导报, 2020, 34(12): 12045-12049.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed