Please wait a minute...
材料导报  2020, Vol. 34 Issue (24): 24068-24073    https://doi.org/10.11896/cldb.20020080
  无机非金属及其复合材料 |
煤系高岭土中残留炭的分离回收与材料化利用研究
胡丙升1,2, 王宏1,2, 宋俊超1,2, 魏亮1,2, 岳世松1,2, 贾金鑫1,2, 史长亮3, 杨蕾3
1 天地(唐山)矿业科技有限公司,唐山063000
2 河北省煤炭洗选工程技术研究中心,唐山063000
3 河南理工大学化学化工学院,焦作454000
Separation and Recovery of Residual Carbon from Coal-derived Kaolinite and Its Materialization Utilization
HU Bingsheng1,2, WANG Hong1,2, SONG Junchao1,2, WEI Liang1,2, YUE Shisong1,2, JIA Jinxin1,2, SHI Changliang3, YANG Lei3
1 Tangshan Research Institute Co., Ltd., China Coal Technology & Engineering Group, Tangshan 063000, China
2 Hebei Province Coal Washing & Engineering Technology Research Center, Tangshan 063000, China
3 College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
下载:  全 文 ( PDF ) ( 4784KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 煤系高岭土中残留炭的分离回收是实现其高值化综合利用的重要前提。以内蒙古煤系高岭土为研究对象,采用反浮选工艺分离回收残留炭,探索多段反浮选工艺条件下残留炭的分离回收效果。在此基础上,以残留炭为原料,采用NaOH/KOH活化法制备多孔炭,并将其用作超级电容器电极材料。利用低温N2吸附、扫描电镜、恒流充放电、循环伏安等方法表征多孔炭的微观结构和其用作电极材料的电化学性能。研究表明,采用“粗选-两段精选-扫选”的反浮选工艺可有效分离回收煤系高岭土中的残留炭,回收率可达85.22%。采用NaOH/KOH活化残留炭分别可以制备出BET比表面积为2 079 m2/g和2 324 m2/g、总孔容为1.167 cm3/g和1.328 cm3/g的高性能多孔炭。该多孔炭具有相互贯通的“大孔-中孔-微孔”梯级孔径分布和良好的吸附性能,碘吸附值可达2 205 mg/g和2 491 mg/g,亚甲基蓝吸附值可达322 mg/g和406 mg/g。两种多孔炭用作电极材料均展示出优异的电化学性能,其比电容量分别可达256 F/g和285 F/g,具有良好的大电流充放电特性和优异的循环稳定性,经1 500次循环充放电后,比电容量保持率超过90%,应用前景良好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡丙升
王宏
宋俊超
魏亮
岳世松
贾金鑫
史长亮
杨蕾
关键词:  煤系高岭土  残留炭  浮选分离  多孔炭  电极材料    
Abstract: Separation and recovery of residual carbon from coal-series kaolinite is an important prerequisite for its high value comprehensive utilization. In this paper, the residual carbon was separated and recovered from Inner Mongolia coal-series kaolinite by reverse flotation technology. The separation and recovery effect of residual carbon under the condition of multi-stage reverse flotation was explored. Moreover, porous carbons applied as electrode materials for supercapacitors were prepared from residual carbon via NaOH or KOH activation. The microstructure of porous carbon and the electrochemical performance porous carbon electrode were characterized by N2 adsorption/desorption, scanning electron microscope, galvanostatic charge/discharge and cyclic voltammetry. The results show that residual carbon can be effectively separated and recovered from coal-series kaolinite through “roughing - two step cleaning-scavenging” reverse flotation technology, and its recovery was 85.22%. High-performance porous carbons with specific surface area of 2 079 m2/g and 2 324 m2/g, total pore volume of 1.167 cm3/g and 1.328 cm3/g were prepared by NaOH and KOH activation, respectively. These porous carbons exhibited interconnected “macropore-mesopore-micropore” pore size distribution and superior adsorption performance, their iodine adsorption value reached 2 205 mg/g and 2 491 mg/g, methylene blue adsorption value reached 322 mg/g and 406 mg/g. The two kinds of porous carbon electrode materials for supercapacitor exhibited an excellent electroche-mical performance. The specific capacitances were as high as 256 F/g and 285 F/g and exhibited good high current charge-discharge characte-ristics as well as excellent cycling performance, and its initial specific capacitance were retained more than 90% after 1 500 cycles.
Key words:  coal-series kaolinite    residual carbon    flotation separation    porous carbon    electrode materials
               出版日期:  2020-12-25      发布日期:  2020-12-24
ZTFLH:  TD98  
  TQ424.1  
基金资助: 天地科技股份有限公司科技创新创业资金专项项目(2018-TD-ZD012)
通讯作者:  hbs811@163.com   
作者简介:  胡丙升,中国煤炭科工集团唐山研究院,高级工程师。2005年6月毕业于安徽理工大学,同年加入煤炭科学研究总院唐山分院干法选煤研究所工作至今。主要从事干法重力分选设备的研发与推广,重点研究干法选煤、建筑垃圾分选、非金属矿物的分选。
引用本文:    
胡丙升, 王宏, 宋俊超, 魏亮, 岳世松, 贾金鑫, 史长亮, 杨蕾. 煤系高岭土中残留炭的分离回收与材料化利用研究[J]. 材料导报, 2020, 34(24): 24068-24073.
HU Bingsheng, WANG Hong, SONG Junchao, WEI Liang, YUE Shisong, JIA Jinxin, SHI Changliang, YANG Lei. Separation and Recovery of Residual Carbon from Coal-derived Kaolinite and Its Materialization Utilization. Materials Reports, 2020, 34(24): 24068-24073.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020080  或          http://www.mater-rep.com/CN/Y2020/V34/I24/24068
1 Li J Y, Zhou X L, Lei L.Yunnan Metallurgy, 2009, 38 (1), 23 (in Chinese).
李家毓, 周兴龙, 雷力.云南冶金, 2009, 38(1), 23.
2 Li G D, Yin Y Y, Lu R, et al.Mineral Protection and Utilization, 2018 (4), 142 (in Chinese).
李国栋, 殷尧禹, 卢瑞, 等. 矿产保护与利用, 2018(4), 142.
3 Chen J, Min F, Liu L, et al.Fuel, 2020, 266, 117082.
4 Hou L C, Wang Z H, Wang L, et al.Acta Mineralogica Sinica, 2002(2),149 (in Chinese).
侯龙超, 王哲皓, 汪灵, 等. 矿物学报,2020(2),149.
5 Yin Q L. Preparation of γ-AlOOH from coal-bearing kaolinite by acid leaching and their adsorption properties. Master′s Thesis, Inner Mongolia Normal University, China, 2018(in Chinese).
尹全来. 酸浸煤系高岭土制备γ-AlOOH及其吸附性能的研究.硕士学位论文, 内蒙古师范大学, 2018.
6 Cui Y. Clean Coal Technology, 2018, 24 (S1), 27 (in Chinese).
崔艳.洁净煤技术, 2018, 24(S1), 27.
7 Ren R C, Zheng Z Y, Zhao J Y, et al.Non-Metallic Mine, 2018, 41 (5), 54 (in Chinese).
任瑞晨, 郑忠宇, 赵靖宇, 等. 非金属矿, 2018, 41(5), 54.
8 Liu Y L, Fan M Q.Coal Technology, 2018, 37 (4), 330 (in Chinese).
刘彦丽, 樊民强. 煤炭技术, 2018, 37(4), 330.
9 Liu Y L, Fan M Q. China Mining, 2017, 26 (10), 142 (in Chinese).
刘彦丽, 樊民强. 中国矿业, 2017, 26(10), 142.
10 Li C X, Liu G Q, Bai Y, et al.Non-Metallic Mine, 2018, 41 (3), 59 (in Chinese).
李彩霞, 刘高全, 白阳, 等. 非金属矿, 2018, 41(3), 59.
11 Liu Z H, Peng Y L, Liu B, et al.Non-Metallic Mine, 2015, 38(3), 46 (in Chinese).
刘振环, 彭耀丽, 刘博, 等. 非金属矿, 2015, 38(3), 46.
12 Xing Y, Xu X, Gui X, et al.Fuel, 2017, 195, 284.
13 He J, Yao Y, Lu W, et al. Journal of Cleaner Production, 2019, 228, 956.
14 Zhu L, Liu S L, Li X F. China Non-Metallic Mining Industry Herald, 2018 (4), 7(in Chinese).
朱玲, 刘少林, 李祥飞. 中国非金属矿工业导刊, 2018(4), 7.
15 Ji M J, Lei S M, Huang T, et al. Inorganic Salt Industry, 2015, 47 (11), 53 (in Chinese).
姬梦姣, 雷绍民, 黄腾, 等.无机盐工业, 2015, 47(11), 53.
16 Zhao X S, Wang D X, Hong Y, et al.Non-Metallic Mine, 2019, 42 (4), 71 (in Chinese).
赵雪淞, 王冬旭, 洪琰, 等. 非金属矿, 2019, 42(4), 71.
17 Liang X. Experimental study on kaolin separation and calcining whitening in coal gangue.Master′s Thesis, Xi′an University of Science and Techno-logy, China, 2018 (in Chinese).
梁效. 煤矸石中高岭土的分选及煅烧增白试验研究. 硕士学位论文, 西安科技大学, 2018.
18 Gao F, Zhang J Y, Zhang B J.Journal of Fuel Chemistry and Technology, 2010, 38(6),752 (in Chinese).
高峰, 张济宇, 张碧江.燃料化学学报, 2010, 38(6), 752.
19 Zhao X, Chen H, Kong F, et al.Chemical Engineering Journal, 2019, 364, 226.
20 Wang H Y, Zhu H Z, Wang S K, et al. Journal of Functional Materials, 2019, 50(8), 8032 (in Chinese).
王海洋, 朱洪喆, 王守凯, 等. 功能材料, 2019, 50(8), 8032.
21 Zhang C T, Xing B L, Huang G X, et al.Materials Reports A: Review Papers, 2018, 32(4),1088(in Chinese).
张传涛, 邢宝林, 黄光许, 等.材料导报:综述篇, 2018, 32(4), 1088.
22 Shi C L, Xing B L, Zeng H H, et al.Materials Reports A: Review Papers, 2018, 32(10), 3318(in Chinese).
史长亮, 邢宝林, 曾会会, 等. 材料导报:综述篇, 2018, 32(10), 3318.
23 Zhang Y, Song X L, Xu Y, et al.Journal of Cleaner Production, 2019, 210, 366.
24 Guo H, Zhang J S, Zhu T X, et al.Materials Reports B:Research Papers, 2016, 30(1), 24 (in Chinese).
郭晖, 张记升, 朱天星, 等. 材料导报:研究篇, 2016, 30(1), 24.
25 Xin R R, Miao H J, Jiang W, et al.Journal of Inorganic Chemistry, 2019, 35 (10), 1781 (in Chinese).
辛冉冉, 缪杭锦, 姜伟, 等. 无机化学学报, 2019, 35(10), 1781.
26 Zhang L, Zhan Z L, Zhang T D, et al.Advanced Chemical Materials, 2017, 45 (2), 117(in Chinese).
张玲, 詹肇麟, 张天栋, 等. 化工新型材料, 2017, 45(2), 117.
27 Xing B L, Wang L, Ma A L, et al.Coal Conversion, 2014, 37 (1), 76(in Chinese).
邢宝林, 王力, 马爱玲, 等. 煤炭转化, 2014, 37(1), 76.
28 Song J, Xue W C, Cheng B W, et al.Journal of Tianjin Polytechnic University, 2019, 38 (2), 1 (in Chinese).
宋俊, 薛文池, 程博闻, 等. 天津工业大学学报, 2019, 38(2), 1.
29 Qu X X, Xing B L, Kang W W, et al.Chemical Industry and Engineering Progress, 2018, 37 (6), 2340 (in Chinese).
屈笑笑, 邢宝林, 康伟伟, 等.化工进展, 2018, 37(6), 2340.
30 Xing B, Huang G, Chen Z, et al.Journal of Solid State Electrochemistry, 2017, 21(1), 263.
[1] 孙宏宇, 高静怡, 潘超. 蒲公英基三维分级多孔炭的制备及电化学性能[J]. 材料导报, 2020, 34(4): 4007-4012.
[2] 裴贺兵, 莫尊理, 郭瑞斌, 刘妮娟, 贾倩倩, 高琴琴. 石墨烯量子点:兼具高效和环保的新型超级电容器电极材料[J]. 材料导报, 2020, 34(21): 21093-21098.
[3] 邢宝林, 鲍倜傲, 李旭升, 史长亮, 郭晖, 王振帅, 侯磊, 张传祥, 岳志航. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068.
[4] 任瑞丽, 王会才, 高丰, 岳瑞瑞, 汪振文. 石墨烯基柔性超级电容器复合电极材料的研究进展[J]. 材料导报, 2020, 34(11): 11099-11105.
[5] 刘建伟,王嘉楠,朱蕾,延卫. 柔性锂硫电池材料:综述[J]. 材料导报, 2020, 34(1): 1155-1168.
[6] 李一帆,刘宇航,孙晋蒙,吴乾鑫,龚昕,杜洪方,艾伟,黄维. 柔性储能器件的电极设计研究进展[J]. 材料导报, 2020, 34(1): 1177-1186.
[7] 李灵桐, 臧晓蓓, 曹宁. 锌锰二次电池研究进展[J]. 材料导报, 2019, 33(19): 3210-3218.
[8] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[9] 吴亚鸽, 冉奋. 纤维素基多孔碳膜的制备及其电化学性能研究[J]. 《材料导报》期刊社, 2018, 32(5): 715-718.
[10] 王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
[11] 苏婷, 宋永辉, 张珊, 田宇红, 兰新哲. 硝酸活化时间对煤基电极材料结构及性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 528-532.
[12] 张苗苗,刘旭燕,钱炜. 聚吡咯电极材料在超级电容器中的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 378-383.
[13] 黄嘉平, 崔海坡, 宋成利, 周宇. 不同材料对双极高频电刀温度场的影响[J]. 材料导报, 2018, 32(24): 4319-4323.
[14] 何云龙, 沈沪江, 王炜, 袁慧慧. 柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池关键电极材料研究进展[J]. 材料导报, 2018, 32(21): 3677-3688.
[15] 史长亮, 邢宝林, 曾会会, 张双杰, 郭晖, 贾建波, 张传祥, 田野, 朱阿辉, 张青山. 梯级孔生物质活性炭的制备及其电容特性研究[J]. 材料导报, 2018, 32(19): 3318-3324.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed