Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22050338-7    https://doi.org/10.11896/cldb.22050338
  无机非金属及其复合材料 |
热解碳泡沫材料吸波机理研究
林立海1,2, 李处森1,*, 颜雨坤1, 白炜琛1, 刘利冉1, 张劲松1
1 中国科学院金属研究所,沈阳 110016
2 中国科学技术大学材料科学与工程学院,合肥 230026
Research on the Microwave Absorption Mechanism of Pyrolytic Carbon Foam Materials
LIN Lihai1,2, LI Chusen1,*, YAN Yukun1, BAI Weichen1, LIU Liran1, ZHANG Jinsong1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
下载:  全 文 ( PDF ) ( 9230KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为避开高分子材料作为基体,进一步拓展碳系吸波材料在空间环境或仿空间环境中的应用,本工作提出了预制体法结合热解工艺制备热解碳泡沫吸波材料的新思路,采取从400 ℃到1 500 ℃的不同目标热解温度制备了一系列热解碳泡沫材料,通过对不同温度热解碳泡沫材料的傅里叶红外光谱、热重-差热、X射线衍射和电化学分析,明确了热解碳泡沫为半导体材料,其热解残余基团无序区造成的阈值效应、共轭效应和位阻效应抑制π电子离域移动,控制载流子浓度,进而影响热解碳泡沫材料的电磁性能。对不同温度热解碳泡沫材料电磁参数的测试表明,600~700 ℃热解的碳泡沫材料的介电常数实部和虚部大小适合,适合作吸波材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林立海
李处森
颜雨坤
白炜琛
刘利冉
张劲松
关键词:  碳泡沫吸波材料  热解  半导体  空间环境  热真空    
Abstract: In order to avoid using polymer as basis materials and further expand the application of carbon-based absorbing materials in space or simulated space environments, a new idea for preparing pyrolytic carbon foam absorbing materials by the precast body method combined with pyrolysis process was proposed in this work. A series of pyrolytic carbon foams were prepared at different target pyrolysis temperatures ranging from 400 ℃ to 1 500 ℃. Through the analysis of Fourier infrared spectrum (FTIR), thermogravimetric and differential scanning calorimetry(TG-DSC), X-ray diffraction (XRD) and electrochemistry of the pyrolytic carbon foam materials at different temperatures, it is confirmed that the pyrolytic carbon foam is a semiconductor material. The threshold, conjugation and site resistance effects caused by the pyrolytic residual functional groups and their disordered region inhibit π-electron off-domain mobility and control the carrier concentration, which in turn affect the electromagnetic properties of pyrolytic carbon foam materials. The electromagnetic parameters of carbon foam materials at different pyrolytic temperatures show that the pyrolytic carbon foam materials at 600 ℃ to 700 ℃ are suitable for use as absorbing materials.
Key words:  carbon foam absorbing material    pyrolysis    semiconductor    space environment    thermal vacuum
发布日期:  2024-01-16
ZTFLH:  TB34  
通讯作者:  李处森,中国科学院金属研究所高级工程师、硕士研究生导师。1993年山东大学化学系应用化学专业本科毕业,1999年中国科学院金属腐蚀与防护研究所腐蚀电化学专业硕士毕业后到中国科学院金属研究所工作至今,2005年中国科学院金属研究所材料加工工程专业博士毕业。目前主要从事耐极端使用环境轻质、宽频多孔吸波材料的项目研究和工程化推进工作,研制出碳化硅泡沫、碳泡沫、双马泡沫、氰酸酯蜂窝等多种吸波材料,实现了型号应用,获批国家发明专利7项,发表论文10余篇,包括Journal of Materials Science and Technology、Carbon、Ceramics International、Results in Physics 等。csli@imr.ac.cn   
作者简介:  林立海,2010年7月、2013年4月分别于沈阳理工大学和沈阳化工大学获得工学学士学位和硕士学位。现为中国科学技术大学材料科学与工程学院(中科院金属所)博士研究生,在李处森老师的指导下进行研究。目前主要研究领域为耐极端环境吸波材料。
引用本文:    
林立海, 李处森, 颜雨坤, 白炜琛, 刘利冉, 张劲松. 热解碳泡沫材料吸波机理研究[J]. 材料导报, 2024, 38(1): 22050338-7.
LIN Lihai, LI Chusen, YAN Yukun, BAI Weichen, LIU Liran, ZHANG Jinsong. Research on the Microwave Absorption Mechanism of Pyrolytic Carbon Foam Materials. Materials Reports, 2024, 38(1): 22050338-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22050338  或          https://www.mater-rep.com/CN/Y2024/V38/I1/22050338
1 Wu G, Cheng Y, Ren Y, et al. Journal of Alloys and Compounds, 2015, 652, 346.
2 Zhao J, Yao Y Q, Yang X H, et al. Acta Materiae Compositae Sinica, 2020, 37(11), 2684 (in Chinese).
赵佳, 姚艳青, 杨煊赫, 等. 复合材料学报, 2020, 37(11), 2684.
3 Lyu X J, Tang X L, Yi H H, et al. Materials Reports, 2022, 36(18), 1 (in Chinese).
吕秀娟, 唐晓龙, 易红宏, 等. 材料导报, 2022, 36(18), 1.
4 Cui Y, Yang K, Lyu Y, et al. Carbon, 2022, 196, 49.
5 Negi P, Chhantyal A, Dixit A, et al. Sustainable Materials and Techno-logies, 2021, 27, 244.
6 Du Z B, Shi S Q, Chen Y B, et al. Journal of Materials Engineering, 2022, 50(4), 74 (in Chinese).
杜宗波, 时双强, 陈宇滨, 等. 材料工程, 2022, 50(4), 74.
7 Li R, Qing Y, Li W, et al. Ceramics International, 2021, 47, 22864.
8 Huang Lingxi, Duan Yuping, Dai Xuhao, et al. Small, 2019, 15(40), 1902730.
9 Han M Y, Wei G K, Zhou M, et al. Acta Materiae Compositae Sinica, 2022, 39(4), 1363 (in Chinese).
韩敏阳, 韦国科, 周明, 等. 复合材料学报, 2022, 39(4), 1363.
10 Li J, Liu L L, Shen Z Y, et al. Journal of Functional Materials, 2021, 52(11), 11001 (in Chinese).
李均, 刘璐璐, 沈振宇, 等. 功能材料, 2021, 52(11), 11001.
11 Yan J X, Wu J H, Shi J Y, et al. Surface Technology, 2020, 49(5), 155 (in Chinese).
燕佳欣, 吴建华, 时君友, 等. 表面技术, 2020, 49(5), 155.
12 Wang C, Feng Y, Zhou J, et al. Journal of Colloid and Interface Science, 2022, 613, 256.
13 Gunwant D, Vedrtnam A. Journal of Alloys and Compounds, 2021, 881, 160572.
14 Wu Y M, Huang Z T. Polymer Communication, 1981(6), 403 (in Chinese).
吴瑶曼, 黄志镗. 高分子通讯, 1981(6), 403.
15 Zheng Z X, Wang D G, Liang G J, et al. Materials Reports, 2022, 36(7), 227 (in Chinese).
郑梓璇, 王德刚, 梁国杰, 等. 材料导报, 2022, 36(7), 227.
16 Liu Chenzhen, Cao Huanxin, Jin Shaocai, et al. Solar Energy Materials and Solar Cells, 2022, 243, 111789.
17 Yan J, Yang J, Wang T, et al. Chinese Journal of Materials Research, 2021, 35(9), 652 (in Chinese).
鄢俊, 杨进, 王涛, 等. 材料研究学报, 2021, 35(9), 652.
18 Wang C G, Lin L, Lu N Q, et al. Acta Chimica Sinica, 2008, 66(16), 6 (in Chinese).
王存国, 林琳, 路乃群, 等. 化学学报, 2008, 66(16), 6.
19 Banerjee R, Regalbuto J. Applied Catalysis A: General, 2020, 595, 117504.
20 Xie D D, Zhang B R, Zhao H, et al. Materials Reports, 2021, 35(S2), 46 (in Chinese).
谢丹丹, 张宝荣, 赵晖, 等. 材料导报, 2021, 35(S2), 46.
21 Kanibolotsky A, Laurand N, Dawson M, et al. Accounts of Chemical Research, 2019, 52, 1665.
22 Lee W, Park Y. Polymers, 2014, 6, 1057.
23 El-Aziz A, Hoyer R, Kibler L, et al. Electrochimica Acta, 2006, 12, 2518.
24 Wang J, Lei Z X, Yao J Y, et al. CIESC Journal, 2022, 73(3), 1403 (in Chinese).
王建, 雷子萱, 姚家钰, 等. 化工学报, 2022, 73(3), 1403.
25 Jiang X, Liu F, Lyu Y, et al. Journal of Solid Rocket Technology, 2017, 40(3), 380 (in Chinese).
姜雪, 刘锋, 吕游, 等. 固体火箭技术, 2017, 40(3), 380.
26 Fang Z G. Investigation on the microwave absorbing properties of carbon foams. Ph. D. Thesis, Graduate School of Chinese Academy of Sciences, China, 2008 (in Chinese).
方志刚. 炭泡沫吸波性能的研究. 博士学位论文, 中国科学院研究生院, 2008.
27 Chen G Z, Chen P, Xu D W, et al. Chinese Journal of Materials Research, 2022, 36(1), 29 (in Chinese).
陈冠震, 陈平, 徐东卫, 等. 材料研究学报, 2022, 36(1), 29.
[1] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[2] 列维茨基·谢尔盖, 曹泽祥, 柯巴·亚历山大, 柯巴·玛丽亚. 激光辐射波长和脉冲寿命对碲化镉熔化阈值的影响[J]. 材料导报, 2024, 38(7): 22120127-6.
[3] 杜金晶, 孙晔, 朱军, 李倩, 王斌, 刘景田, 孟晓荣. 五氧化二钒薄膜材料制备方法研究进展[J]. 材料导报, 2024, 38(5): 22100297-9.
[4] 徐杨, 刘成宝, 郑磊之, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. 高结晶度g-C3N4在光催化领域的研究进展[J]. 材料导报, 2024, 38(21): 23060180-13.
[5] 莫日格吉乐, 包莫日根, 白璐, 谢兵, 于晓丽, 曹鸿璋, 赵丹蕾, 赵斯琴. CeO2光催化原理及改性研究进展[J]. 材料导报, 2024, 38(21): 23080150-6.
[6] 赵波, 柳俊. 原子层/分子层沉积技术及其在半导体先进工艺中的应用[J]. 材料导报, 2024, 38(20): 23030081-12.
[7] 林坚, 张松林, 王悦安, 孙浩, 聂钰昌, 陈德睢. 氧化镍空穴材料在Ⅱ-Ⅵ族量子点电致发光器件中的应用进展[J]. 材料导报, 2024, 38(14): 22100205-8.
[8] 许丹, 于彩莲, 李芬, 杨莹, 李博琳, 芦柳, 蔺宇晨. CO2还原光催化材料研究进展[J]. 材料导报, 2024, 38(14): 23030280-8.
[9] 赵强, 李淑英, 郭智楠, 许琳, 赵一博, 吕靖, 尚建鹏, 郭永, 王俊丽. 氧化亚铜基光催化剂的制备及降解性能研究进展[J]. 材料导报, 2024, 38(14): 22110145-15.
[10] 周荷雯, 姚敦雪, 杨晴. 废弃塑料热解技术碳足迹研究进展[J]. 材料导报, 2024, 38(14): 22120220-8.
[11] 罗振敏, 张春艳, 杨勇. 氨纶防黄剂粉尘的着火特性分析[J]. 材料导报, 2024, 38(11): 22100095-8.
[12] 尹嘉琦, 沈文锋, 吕大伍, 赵京龙, 胡鹏飞, 宋伟杰. 金属氧化物半导体MEMS气体传感器研究进展[J]. 材料导报, 2024, 38(1): 22070075-14.
[13] 李洁. 多孔富缺陷半导体应用于光催化降解废水有机污染物[J]. 材料导报, 2023, 37(12): 21110143-9.
[14] 李文生, 黄晓龙, 成波, 李建军, 宋强, 赛纽特·乌拉吉米尔. 硅低温热解活化包覆超细金刚石及其抗氧化和分散稳定性[J]. 材料导报, 2023, 37(11): 21120094-6.
[15] 黄艳琴, 甄宇航, 王晨州, 宁晓阳, 刘兰岭, 李凯, 赵莉, 陆强. “双碳”背景下市政污泥热解资源化利用研究进展[J]. 材料导报, 2023, 37(10): 23020016-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed