Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22070075-14    https://doi.org/10.11896/cldb.22070075
  无机非金属及其复合材料 |
金属氧化物半导体MEMS气体传感器研究进展
尹嘉琦1,2, 沈文锋2,3,*, 吕大伍2,3, 赵京龙2,4, 胡鹏飞1, 宋伟杰2,3,*
1 上海大学材料科学与工程学院,上海 200444
2 中国科学院宁波材料技术与工程研究所,浙江 宁波 315201
3 中国科学院大学材料科学与光电子工程中心,北京 100049
4 江西理工大学材料冶金化学学部,江西 赣州 341000
Advances in MEMS Gas Sensors Based on Metal-oxide Semiconductor Materials
YIN Jiaqi1,2, SHEN Wenfeng2,3,*, LYU Dawu2,3, ZHAO Jinglong2,4, HU Pengfei1, SONG Weijie2,3,*
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2 Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
4 Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
下载:  全 文 ( PDF ) ( 25951KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着物联网的快速发展,各领域对气体监测的需求越来越大,基于先进微机电系统(Micro-electro-mechanical systems,MEMS)技术的金属氧化物半导体(Metal oxide semiconductor,MOS)气体传感器在过去几十年里取得了很大发展。MEMS微热板的多样化设计、MOSs纳米结构的多样化以及机器学习算法的出现为MEMS的传感性能以及智能传感系统的构建提供了很大助力。本文从MEMS气体传感器的分类、制备和应用以及传感器阵列的构建等方面综述了金属氧化物半导体MEMS气体传感器的最新研究进展,并对MEMS基气体传感器的发展前景进行了总结和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹嘉琦
沈文锋
吕大伍sup>2
3
赵京龙
胡鹏飞
宋伟杰
关键词:  气体传感器  金属氧化物半导体  微机电系统  传感器阵列  智能传感系统    
Abstract: With the rapid development of the Internet of things, there is an increasing demand for monitoring volatile organic chemicals in various fields. Metal-oxide semiconductor (MOS) gas sensors based onadvanced micro-electro-mechanical systems (MEMS) technology have significantly developed in the past few decades. The diverse design of micro hot plates, the diversification of MOS nanostructures, and the emergence of machine learning algorithms have promoted the sensing performance of MEMS sensors and their intelligent sensing systems. This paper will summarize the latest advances in the classification, preparation, and application of MEMS gas sensors and the sensor array. Finally, the deve-lopment prospect of MEMS-based gas sensors is summarized.
Key words:  gas sensors    metal-oxide semiconductor    micro-electro-mechanical system    sensor array    intelligent sensing system
出版日期:  2024-01-10      发布日期:  2024-01-16
ZTFLH:  O659.31  
基金资助: 浙江省自然科学基金项目(LGF22F010008);宁波市自然科学基金项目(202003N4362; 202003N4332)
通讯作者:  沈文锋,中国科学院宁波材料技术与工程研究所副研究员。2000年于东北大学理学院物理专业获得学士学位;2003年于东北大学材料物理与化学专业获硕士学位;2010年2月于中国科学院金属研究所材料科学与工程专业获工学博士学位;2010年3月至今于中国科学院宁波材料技术与工程研究所从事智能传感器件及应用研究。已发表SCI学术论文60余篇,H-Index 指数21,参与撰写中英文专著3本,申请国家发明专利20余项,其中6项专利已由企业进行产业化。wfshen@nimte.ac.cn;
宋伟杰,中国科学院宁波材料技术与工程研究所研究员。2002 年清华大学物理化学专业博士毕业;2002—2006年在日本物质材料研究机构工作,2006 年起加入宁波材料所任研究员,2007 年入选中科院百人计划。主要从事新能源技术、功能材料与纳米器件的研究工作。发表 SCI 论文90余篇,申请中国发明专利50余项。weijiesong@nimte.ac.cn   
作者简介:  尹嘉琦,2020年于南昌大学获得工学学士学位。现为上海大学与中国科学院宁波材料技术与工程研究所联合培养硕士研究生,在沈文锋副研究员的指导下进行研究。目前主要研究领域为室内环境监测应用的智能气体传感器阵列。
引用本文:    
尹嘉琦, 沈文锋, 吕大伍, 赵京龙, 胡鹏飞, 宋伟杰. 金属氧化物半导体MEMS气体传感器研究进展[J]. 材料导报, 2024, 38(1): 22070075-14.
YIN Jiaqi, SHEN Wenfeng, LYU Dawu, ZHAO Jinglong, HU Pengfei, SONG Weijie. Advances in MEMS Gas Sensors Based on Metal-oxide Semiconductor Materials. Materials Reports, 2024, 38(1): 22070075-14.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22070075  或          https://www.mater-rep.com/CN/Y2024/V38/I1/22070075
1 Kwak S, Shim Y S, Yoo Y K, et al. Electronic Materials Letters, 2018, 14(3), 305.
2 Kang J G, Park J S, Lee H J. Sensors and Actuators B-Chemical, 2017, 248, 1011.
3 Simon T, Bârsan N, Bauer M, et al. Sensors and Actuators B-Chemical, 2001, 73(1), 1.
4 Nakamura E, Matsumoto K, Mori H, et al. In:Conference Record of 2019 IEEE 69th Electronic Components and Technology Conference (ECTC). Las Vegas, 2019, pp. 417.
5 Tian F C, Jiang A Y, Yang T C, et al. IEEE Sensors Journal, 2021, 21(13), 14587.
6 Tao W H, Tsai C H. Sensors and Actuators B-Chemical, 2002, 81(2-3), 237.
7 Niu G Q, Gong H M, Zhao C H, et al. In:Conference Record of 2020 33rd IEEE International Conference on Micro Electro Mechanical Systems (MEMS). Vancouver, 2020, pp. 799.
8 Hwang I S, Kim S J, Choi J K, et al. Sensors and Actuators B-Chemical, 2010, 148(2), 595.
9 Majhi S M, Rai P, Yu Y T, et al. ACS Applied Materials & Interfaces, 2015, 7(18), 9462.
10 Lee H K, Moon S E, Choi N J, et al. Journal of the Korean Physical Society, 2012, 60(2), 225.
11 Ma J H, Ren Y, Zhou X R, et al. Advanced Functional Materials, 2018, 28(6), 67.
12 Zhang W Y, Yue H, Liu J J, et al. Transducer and Microsystem Techno-logies, 2022, 41(5), 4(in Chinese).
张伟岩, 岳宏, 刘继江, 等. 传感器与微系统, 2022, 41(5), 4.
13 Lekshmi M S, Pamula R, Kartik A, et al. In:ConferenceRecord of 2018 7th IEEE International Symposium on Next-Generation Electronics (ISNE)-Next-GenerationElectronicsfor AI and 5G Communications. Natl Taipei Univ Technol, 2018, pp. 112.
14 Yuan Z Y, Yang F, Meng F L, et al. IEEE Sensors Journal, 2021, 21(17), 18368.
15 Liu H T, Zhang L, Li K H H, et al. Micromachines, 2018, 9(11), 557.
16 Davydova M, Kromka A, Rezek B, et al. Applied Surface Science, 2010, 256(18), 5602.
17 Moon B U, Lee J M, Shim C H, et al. Sensors and Actuators B-Chemical, 2005, 108(1-2), 271.
18 He B, Yang Y, Yuen M F, et al. Nano Today, 2013, 8(3), 265.
19 Nazemi H, Joseph A, Park J, et al. Sensors, 2019, 19(6), 1285.
20 Guan D B, Yang F, Liu Q, et al. In:Conference Record of 2016 15th IEEE Sensors Conference. Orlando, 2016, pp. 1.
21 Tsai Y T, Chang S J, Tang I T, et al. IEEE Sensors Journal, 2018, 18(13), 5559.
22 Chen Y L, Li M J, Yan W J, et al. ACS Omega, 2021, 6(2), 1216.
23 Chen Y, Xu P C, Zhang P P, Zhang P P, et al. In:Conference Record of 33rd IEEE International Conference on Micro Electro Mechanical Systems (MEMS). Vancouver, 2020, pp. 1300.
24 Zhou Q, Sussman A, Chang J Y, et al. Sensors and Actuators A-Physical, 2015, 223, 67.
25 Cho I, Kang K, Yang D, et al. ACS Applied Materials & Interfaces, 2017, 9(32), 27111.
26 Xie D C, Chen D L, Peng S F, et al. IEEE Electron Device Letters, 2019, 40(7), 1178.
27 Das I, Bhattacharyya R, Saha H, et al. IEEE Sensors Journal, 2020, 20(23), 14132.
28 Liu Y Y, Xu X Y, Chen Y, et al. Sensors and Actuators B-Chemical, 2018, 262, 26.
29 Nascimento E P, Firmino H C T, Neves G A, et al. Ceramics International, 2022, 48(6), 7405.
30 Long H, Harley-Trochimczyk A, He T Y, et al. ACS Sensors, 2016, 1(4), 339.
31 Arunkumar S, Hou T F, Kim Y B, et al. Sensors and Actuators B-Chemical, 2017, 243, 990.
32 Nagarjuna Y, Hsiao Y J. Journal of The Electrochemical Society, 2021, 168(6),067521.
33 Luo N, Wang C, Zhang D, et al. Sensors and Actuators B-Chemical, DOI:10. 1016/j. snb. 2021. 130982.
34 Yang M Z, Dai C L. Sensors, 2015, 15(1), 1623.
35 Mahajan S, Jagtap S. Applied Materials Today, DOI:10. 1016/j. apmt. 2019. 100483.
36 Majhi S M, Rai P, Yu Y T. ACS Applied Materials & Interfaces, 2015, 7(18), 9462.
37 Xu L, Dai Z F, Duan G T, et al. Scientific Reports, DOI:10.1038/srep10507.
38 Santra S, Sinha A K, De Luca A, et al. Nanotechnology, DOI:10.1088/0957-4484/27/12/125502.
39 YuanK P, Zhu L Y, Yang J H, et al. Journal of Colloid and Interface Science, 2020, 568, 81.
40 Hwang I S, Kim S J, Choi J K, et al. Sensors and Actuators B-Chemical, 2010, 148(2), 595.
41 Wei A, Pan L H, Huang W. Materials Science and Engineering B-Advanced Functional Solid-State Materials. 2011, 176(18), 1409.
42 Chen Y, Xu P C, Xu T, et al. Sensors and Actuators B-Chemical, 2017, 240, 264.
43 Liu R C, Xie D C, Adedokun G, et al. IEEE Sensors Journal, 2021, 21(17), 18578.
44 Luo N, Chen Y, Zhang D, et al. ACS Applied Materials & Interfaces, 2020, 12(50), 56203.
45 Lee D H, Kang S K, Pak Y, et al. Sensors and Actuators B-Chemical, 2018, 255, 70.
46 Ando M, Biju V, Shigeri Y. Analytical Sciences, 2018, 34(3), 263.
47 Tsai Y T, Chang S J, Tang I T, et al. IEEE Sensors Journal, 2018, 18(13), 5559.
48 Skeaff J M, Dubreuil A A. Sensors and Actuators B-Chemical. 1993, 10(3), 161.
49 Chung P R, Tzeng C T, Ke M T, et al. Sensors, 2013, 13(4), 4468.
50 Xu D S, Xu P C, Wang X Q, et al. ACS Applied Materials & Interfaces, 2020, 12(7), 8091.
51 Zeng J, Hu M, Wang W D, et al. Sensors and Actuators B-Chemical, 2012, 161(1), 447.
52 Wetchakun K, Samerjai T, Tamaekong N, et al. Sensors and Actuators B-Chemical, 2011, 160(1), 580.
53 Urasinska-Wojcik B, Vincent T A, Chowdhury M F, et al. Sensors and Actuators B-Chemical, 2017, 239, 1051.
54 Zhou Q, Sussman A, Chang J Y, et al. Sensors and Actuators A-Physical, 2015, 223, 67.
55 David S P S, Veeralakshmi S, Sandhya J, et al. Sensors and Actuators B-Chemical, DOI:10. 1016/j. snb. 2020. 128410.
56 Wang T S, Liu S Y, Sun P, et al. Sensors and Actuators B-Chemical, DOI:10. 1016/j. snb. 2021. 129949.
57 Im D, Kim D, Jeong D, et al. Journal of Materials Science & Technology, 2020, 38, 56.
58 Xu Y S, Zheng L L, Yang C. ACS Applied Materials & Interfaces, 2020, 12, 20704.
59 Li Z S, Liu X H, Zhou M. Journal of Hazardous Materials, 2021, 415, 125757.
60 Zhang J, Wu J J, Wang X X. Sensors and Actuators B-Chemical, 2017, 243, 1010.
61 Lv D W, Shen W F, Chen W G, et al. Sensors & Actuators B Chemical, DOI:10. 1016/j. snb. 2020. 129085.
62 Prajesh R, Jain N, Agarwal A. Microsystem Technologies-Micro-And Nanosystems-Information Storage and Processing Systems, 2016, 22(9), 2185.
63 Santra S, Sinha A K, De Luca A, et al. Nanotechnology, DOI:10. 1088/0957-4484/27/12/125502.
64 Kang J G, Park J S, Lee H J. Sensors and Actuators B-Chemical, 2017, 248, 1011.
65 Khoang N D, Hong H S, Trung D D, et al. Sensors and Actuators B-Chemical, 2013, 181, 529.
66 Dai Z F, Xu L, Duan G T, et al. Scientific Reports, DOI:10. 1038/srep01669.
67 Basu P K, Benedict S, Kallat S, et al. Journal of Microelectromechanical Systems, 2017, 26(1), 48.
68 Lee J, Kim J, Im J P, et al. Journal of the Korean Physical Society, 2017, 70(10), 924.
69 Zhou Q, Sussman A, Chang J Y, et al. Sensors and Actuators A-Physical, 2015, 223, 67.
70 Huang Z G. Research on inkjet 3D printing of graphene composites. Ph. D. Thesis, University of Science and Technology of China, China, 2020 (in Chinese).
黄哲观. 基于喷墨3D打印的石墨烯复合材料的研究. 博士学位论文, 中国科学技术大学, 2020.
71 Lee H K, Moon S E, Choi N J, et al. Journal of the Korean Physical Society, 2012, 60(2), 225.
72 Tanneeru A, Akbulut F P, Lee B, et al. In:Conference Record of 2019 18th IEEE Sensors Conference. Canada, 2019.
73 Xu Y S, Zheng W, Liu X H. Materials Horizons, 2020, 7, 1519.
74 Strobel J, Ghimpu L, Postica V, et al. Nanotechnology, DOI:10. 1088/1361-6528/aaf0e7.
75 Yang I H, Jin J H, Min N K. Micromachines, DOI:10. 3390/mi11010024.
76 Prajapati C S, Soman R, Rudraswamy S B, et al. Journal of Microelectromechanical System, 2017, 26(2), 433.
77 Xie D C, Liu R C, Adedokun G, et al. In:Conference Record of 2021 21st International Conference on Solid-State Sensors, Actuators and Mic-rosystems (Transducers). Electr Network, 2021, pp. 160.
78 Xue F, Adedokun G, Xie D C. Journal of Microelectromechanical Systems, 2022, 31(2), 275.
79 Xie D C, Liu R C, Adedokun G, et al. In:Conference Record of 2021 34th IEEE International Conference on Micro Mechanical Systems(MEMS). Electr Network, 2021, pp. 430.
80 Tang S R, Chen W G, Jin L F, et al. Sensors and Actuators B-Chemical, DOI:10. 1016/j. snb. 2020. 127998.
81 Ma D L, Gao J M, Zhang Z X, et al. Sensors and Actuators B-Chemical, DOI:10. 1016/j. snb. 2020. 129349.
82 Khan M A H, Thomson B, Debnath R, et al. IEEE Sensors Journal, 20(11), 6020.
83 El Barbri N, Mirhisse J, Ionescu R, et al. Sensors and Actuators B-Chemical, 2009, 141(2), 538.
84 AnnanouchF E, Gràcia I, Figueras E, et al. Sensors and Actuators B-Chemical, 2015, 216, 374.
[1] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[2] 穆申玲, 沈文锋, 吕大伍, 宋伟杰, 谭瑞琴. 电子鼻技术及其应用研究进展[J]. 材料导报, 2024, 38(14): 23040072-14.
[3] 马江微, 翟海潮, 张紫薇, 胡季帆. MOFs衍生的Sn掺杂In2O3材料的制备及氯气气敏性能[J]. 材料导报, 2023, 37(16): 23040030-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[9] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
[10] Yan MA,Zhi LI,Ruilong RAN,Kang LI. Research on Application of Silk in Biomaterial Field[J]. Materials Reports, 2018, 32(1): 86 -92 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed