Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22070052-9    https://doi.org/10.11896/cldb.22070052
  高分子与聚合物基复合材料 |
热固性树脂基复合材料在表面防护领域的研究现状
张永芳1, 艾宇昕1,2, 刘明2,*, 黄艳斐2, 周新远2, 王海斗3,*
1 西安理工大学印刷包装与数字媒体学院,西安 710048
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
3 陆军装甲兵学院机械产品再制造国家工程研究中心,北京 100072
Research Status of Thermosetting Resin Matrix Composites in the Field of Surface Protection
ZHANG Yongfang1, AI Yuxin1,2, LIU Ming2,*, HUANG Yanfei2, ZHOU Xinyuan2, WANG Haidou3,*
1 Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China
2 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
3 National Engineering Research Center for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 12453KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热固性树脂因其固化后不溶不融、硬度高、比刚性大、耐高温且成品具有优异的尺寸稳定性,在防护涂料、轨道交通、航空航天等广大应用领域获得了认可。然而,随着材料技术的高速发展,传统热固性树脂的力学性能已难以满足各行各业选用材料的性能要求。针对此类问题,目前的解决方案主要围绕新型热固性树脂的研发和对传统热固性树脂进行改性两方面。改性后的热固性树脂综合性能得到了显著提升,且制备周期较短,在抗烧蚀、耐磨损和耐腐蚀等领域起着至关重要的作用。本文综述了近年来热固性树脂基复合材料在抗烧蚀、耐磨损和耐腐蚀等表面防护领域的研究现状,并对其材料种类、防护机理及环境对其性能的影响进行了梳理和总结,探讨了热固性树脂基复合材料未来的发展方向,可为其在接下来的研究中提供理论和技术参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张永芳
艾宇昕
刘明
黄艳斐
周新远
王海斗
关键词:  热固性树脂基复合材料  改性方法  烧蚀  磨损  腐蚀    
Abstract: Thermosetting resins are approved for a wide range of fields of application, such as protective coatings, rail transportation and aerospace. Due to their insolubility, high hardness, high specific rigidity, high-temperature resistance and excellent dimensional stability after curing of the finished product. However, with the rapid development of material technology, the mechanical properties of traditional thermosetting resins have been challenging to meet the performance requirements of materials selected in various industries. Currently, the solution for such problems is mainly the development of new thermosetting resins and modifying traditional thermosetting resins. The comprehensive properties of the modified thermosetting resin have been significantly improved, and it has a short preparation cycle, which plays a crucial role in the fields of ablation resistance, wear resistance, and corrosion resistance. This paper reviews the recent research status of thermosetting resin matrix composites in the field of surface protection, such as ablation resistance, wear resistance, and corrosion resistance. In addition, it compares and summaries their material types, protection mechanisms and the influence of the environment on their performance and discusses the future development direction of thermoset resin-based composites, which can provide theoretical and technical references for their following research.
Key words:  thermosetting resin matrix composite    modification method    ablation    wear    corrosion
发布日期:  2024-01-16
ZTFLH:  TB322  
基金资助: 国家自然科学基金(52075542;52130509;52105235);十四五预研项目
通讯作者:  刘明,陆军装甲兵学院装备再制造技术国防科技重点实验室助理研究员。2001年7月本科毕业于装甲兵工程学院,2018年12月在陆军装甲兵学院装备保障与再制造系材料科学与工程专业取得博士学位。长期从事表面涂层、等离子喷涂方面的研究工作,先后主持或参与国家级及军队级科研项目10余项,其中主持国家自然科学基金面上项目1项、装发预研重点基金项目1项、武器装备预研基金项目2项,获中国机械工业科技发明二等奖1项、军队科技进步二等奖2项。授权国家(国防)发明专利20余项,发表论文40余篇。hzaam@163.com;
王海斗,哈尔滨工程大学特聘教授、博士研究生导师,陆军装甲兵学院机械产品再制造国家工程研究中心主任。清华大学博士毕业,美国乔治华盛顿大学访问学者。国家杰出青年科学基金获得者,中国人民解放军科技领军人才,总装备部“1153”高层次人才,总装备部科技创新贡献奖获得者,先后获国家自然科学二等奖1项,教育部技术发明一等奖及北京市科学技术一等奖,军队科技进步一等奖3项、二等奖3项;授权国家发明专利、实用新型专利及软件著作权20项,另申报国家发明专利12项。发表基础研究论文220余篇,其中SCI检索130篇,EI检索200篇次;出版学术著作5部,含英文著作1部,获“中国人民解放军图书奖”1次。whaidou2021@163.com   
作者简介:  张永芳,西安理工大学印刷包装与数字媒体学院教授、博士研究生导师。主要研究方向为工业润滑与工程摩擦学、表面涂层技术、智能检测与可靠性。先后主持国家自然科学基金项目2项、省部级等各类纵横向科研项目20余项;在国内外专业期刊发表论文50余篇,其中SCI和EI检索40余篇。
引用本文:    
张永芳, 艾宇昕, 刘明, 黄艳斐, 周新远, 王海斗. 热固性树脂基复合材料在表面防护领域的研究现状[J]. 材料导报, 2024, 38(1): 22070052-9.
ZHANG Yongfang, AI Yuxin, LIU Ming, HUANG Yanfei, ZHOU Xinyuan, WANG Haidou. Research Status of Thermosetting Resin Matrix Composites in the Field of Surface Protection. Materials Reports, 2024, 38(1): 22070052-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22070052  或          https://www.mater-rep.com/CN/Y2024/V38/I1/22070052
1 Jin F, Li X, Park S. Journal of Industrial and Engineering Chemistry, 2015, 29, 1.
2 Konuray A O, Fernández-Francos X, Ramis X. Polymer Chemistry, 2017, 8(38), 5934.
3 Liu J, Wang S, Peng Y, et al. Progress in Polymer Science, 2021, 113, 101353.
4 Verma C, Olasunkanmi L O, Akpan E D, et al. Reactive & Functional Polymers, 2020, 156, 104741.
5 Zhi M, Yang X, Fan R, et al. Polymer Degradation and Stability, 2022, 201, 109976.
6 Verma C, Olasunkanmi L O, Akpan E D, et al. Reactive & Functional Polymers, 2020, 156, 104741.
7 Triantou K I, Mergia K, Perez B, et al. Composites Part B: Enginee-ring, 2017, 111, 270.
8 Natali M, Kenny J M, Torre L. Progress in Materials Science, 2016, 84, 192.
9 Hu Z, Meng S, Yi F, et al. Corrosion Science, 2021, 179, 109050.
10 Ahmad S, Ali S, Salman M, et al. Ceramics International, 2021, 47(24), 33956.
11 Tang K, Zhang A, Ge T, et al. Materials Today Communications, 2021, 26, 101879.
12 Wang S, Huang H, Tian Y. Ceramics International, 2020, 46(4), 4307.
13 Chen Y, Chen P, Hong C, et al. Composites Part B: Engineering, 2013, 47, 320.
14 Yan N, Fu Q, Hu D, et al. Corrosion Science, 2021, 182, 109274.
15 Liu Z, Chen Z, Yan L, et al. Materials Chemistry and Physics, 2021, 270, 124823.
16 Zhang D, Yu H, Wang A, et al. Corrosion Science, 2021, 190, 109706.
17 Ahmad S, Ali S, Salman M, et al. Ceramics International, 2021, 47(24), 33956.
18 Park J, Kwon D, Wang Z, et al. Composites Part B: Engineering, 2014, 67, 22.
19 Ahmad M S, Farooq U, Subhani T. Arabian Journal for Science and Engineering, 2015, 40(5), 1529.
20 Yum S H, Kim S H, Lee W I, et al. Composites Science and Technology, 2015, 121, 16.
21 Natali M, Puri I, Kenny J M, et al. Polymer Degradation and Stability, 2017, 141, 84.
22 Guo H, Liu Y Y, Song H, et al. Materials Reports, 2020, 34(S2), 1513(in Chinese).
郭慧, 刘圆圆, 宋寒, 等. 材料导报, 2020, 34(S2), 1513.
23 Zhang P F, Lai X M, Hong C Q, et al. Materials Reports, 2001, 35(16), 16155(in Chinese).
张鹏飞, 赖小明, 洪长青, 等. 材料导报, 2021, 35(16), 16155.
24 Cheng H, Xue H, Hong C, et al. Composites Science and Technology, 2017, 140, 63.
25 Ling Y, Zhang X, Yan L, et al. Materials Chemistry and Physics, 2022, 275, 125283.
26 Duan L, Zhao X, Wang Y. Journal of Alloys and Compounds, 2020, 827, 154277.
27 Vasile B S, Birca A C, Surdu V A, et al. Nanomaterials (Basel, Swit-zerland), 2020, 10(2), 370.
28 Subhani T, Shaukat B, Ali N, et al. Polymer Composites, 2017, 38(8), 1519.
29 Wang H, Li X, Phipps M, et al. Composites Part A, Applied Science and Manufacturing, 2022, 153, 106737.
30 Öztürk B, Arslan F, Öztürk S. Tribology Transactions, 2013, 56(4), 536.
31 Aulia Putra M R, Pratama P S, Prabowo A R. Transportation Research Procedia, 2021, 55, 653.
32 Xiao X, Yin Y, Bao J, et al. Advances in Mechanical Engineering, 2016, 8, 2071833818.
33 Wang Y N, Cao F X, Wang Y F, et al. Materials Reports, 2021, 35(18), 18210(in Chinese).
王亚楠, 曹凤香, 王永锋, 等. 材料导报, 2021, 35(18), 18210.
34 Ahmadijokani F, Alaei Y, Shojaei A, et al. Wear, 2019, 420-421, 108.
35 Rahmani K, Wheatley G, Sadooghi A, et al. Results in Engineering, 2021, 11, 100273.
36 Sun W, Zhou W, Liu J, et al. Tribology Letters, 2017, 66(1), 1.
37 Matějka V, Lu Y, Jiao L, et al. Tribology International, 2010, 43(1), 144.
38 Sun W, Zhou W. Journal of Materials Research and Technology, 2019, 8(5), 4705.
39 Patil N, Krishna P. American Journal of Materials Science, 2015, 5, 121.
40 Agrawal S, Singh K K, Sarkar P K. Tribology International, 2016, 96, 217.
41 Yu M M, Xue K, Liu X Q, et al. Polymer Materials Science & Enginee-ring, 2021, 37(8), 93(in Chinese).
俞鸣明, 薛鹍, 刘雪强, 等. 高分子材料科学与工程, 2021, 37(8), 93.
42 Yu S R, Sun W S, Tang M L, et al. Jorunal of Functional Materials, 2019, 50(11), 11199(in Chinese).
于思荣, 孙伟松, 唐梦龙, 等. 功能材料, 2019, 50(11), 11199.
43 Aranganathan N, Mahale V, Bijwe J. Wear, 2016, 354-355, 69.
44 Baklouti M, Cristol A L, Desplanques Y, et al. Wear, 2015, 330-331, 507.
45 Ria Jaafar T, Ismail N I, Ismail M F, et al. Industrial Lubrication and Tribology, 2017, 69(3), 420.
46 Monreal P, Clavería I, Arteta P, et al. Tribology International, 2021, 154, 1.
47 Patnaik A, Kumar M, Satapathy B K, et al. Wear, 2010, 269(11), 891.
48 Ding J, Zhao H, Yu H. Nanoscale, 2020, 12(3), 16253.
49 Parhizkar N, Ramezanzadeh B, Shahrabi T. Journal of Industrial and Engineering Chemistry (Seoul, Korea), 2018, 64, 402.
50 Liu X, Shen T, Cheng H. Plastics Science and Technology, 2021, 49(9), 96(in Chinese).
刘娴, 沈婷, 程欢. 塑料科技, 2021, 49(9), 96.
51 Ou B, Wang Y, Lu Y. Polymer-plastics Technology and Materials, 2021, 60(6), 601.
52 Tao L, Min W, Qi L, et al. Polymer Degradation and Stability, 2020, 182, 109395.
53 Genna S, Trovalusci F, Tagliaferri V. Composites Part B, Engineering, 2017, 124, 1.
54 Li G, Sun Y N, Wang G J, et al. Materials Reports, 2021, 35(16), 16160(in Chinese).
李过, 孙耀宁, 王国建, 等. 材料导报, 2021, 35(16), 16160.
55 Fihri A, Abdullatif D, Saad H B, et al. Progress in Organic Coatings, 2019, 127, 110.
56 Xia Z, Liu G, Dong Y, et al. Progress in Organic Coatings, 2019, 133, 154.
57 Dagdag O, Hsissou R, El Harfi A, et al. Surfaces and Interfaces, 2020, 18, 100454.
58 Situ Y, Ji W, Liu C, et al. Progress in Organic Coatings, 2019, 130, 158.
59 Yao H, Zhang X, Shen L, et al. Progress in Organic Coatings, 2021, 158, 106382.
60 Li Q, Cao L, Wang W, et al. Composites Part A, Applied Science and Manufacturing, 2022, 163, 107213.
61 Zhu L, Feng C, Cao Y. Applied Surface Science, 2019, 493, 889.
62 Khalili Dermani A, Kowsari E, Ramezanzadeh B, et al. Journal of Industrial and Engineering Chemistry, 2019, 79, 353.
63 Chang K C, Hsu M H, Lu H I, et al. Carbon, 2015, 201466, 144.
64 Mo M, Zhao W, Chen Z, et al. RSC Advances, 2015, 5(70), 56486.
65 Zhang F, Ju P, Pan M, et al. Corrosion science, 2018, 144, 74.
66 Jin Z, Liu H, Wang Z, et al. Progress in Organic Coatings, 2022, 172, 107121.
67 Kim H, Yarin A L, Lee M W. Composites Part B: Engineering, 2020, 182, 107598.
68 Liu T, Zhao H, Zhang D, et al. Corrosion Science, 2021, 187, 109485.
69 Wang J, Yi D, Peng X, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653.
70 Cui G, Zhang C, Wang A, et al. Progress in Organic Coatings, 2021, 155, 106231.
71 Luo G, Pang B, Luo X, et al. Progress in Organic Coatings, 2023, 174, 107245.
[1] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[2] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[3] 赵兴源, 刘昕, 刘秋元, 邱肖盼, 张子月, 江社明, 张启富. 连续物理气相沉积带钢涂镀研究进展与应用现状[J]. 材料导报, 2025, 39(2): 24030032-9.
[4] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[5] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[6] 齐顺顺, 王文健, 汪渊, 丁昊昊. 贝氏体钢轨磨损与接触疲劳行为的研究进展[J]. 材料导报, 2025, 39(1): 23090020-11.
[7] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[8] 赵永福, 唐敏, 姜峨, 银朝晖, 陈子瑞, 张根, 吴宗佩, 李杨. 氨型碱性水化学对690TT腐蚀特性的影响[J]. 材料导报, 2024, 38(7): 23030048-6.
[9] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[10] 王越, 周本基, 徐能能, 乔锦丽. 可逆锌-空气电池锌阳极研究进展及挑战[J]. 材料导报, 2024, 38(6): 23040162-10.
[11] 张学鹏, 张戎令, 杨斌, 肖鹏震, 王小平, 龙朝飞. 冻融-硫酸盐腐蚀耦合作用下早龄期混凝土强度演变及预测模型研究[J]. 材料导报, 2024, 38(5): 22080059-9.
[12] 桂晓露, 程瑄, 李芃飞, 高古辉, 孙丽娅, 易汉平. 石墨烯的分散方法及在水性环氧富锌涂料中的应用进展[J]. 材料导报, 2024, 38(3): 22060047-8.
[13] 朱凯涛, 董多, 杨晓红, 朱冬冬, 王晓红, 马腾飞. GH4169/BNi-7钎焊接头的显微组织、力学性能和腐蚀行为[J]. 材料导报, 2024, 38(24): 23100078-8.
[14] 张而耕, 刘江, 蔡远飞, 梁丹丹, 陈强, 周琼, 黄彪. Cr掺杂对TiAlN涂层的择优取向和摩擦性能的影响机理[J]. 材料导报, 2024, 38(24): 23080252-6.
[15] 王帆,赵国仙, 方堃, 裴文霞, 丁浪勇, 刘冉冉. 3Cr钢在含O2的CO2环境中的腐蚀行为研究[J]. 材料导报, 2024, 38(23): 23070093-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed