Abstract: One meaningful and strategic way to alleviate the energy crisis and global warming issues is to use hydrocarbon fuels converted using solar energy from carbon dioxide (CO2). Choosing efficient and economical photocatalytic materials is the key to obtaining high-value-added products from photocatalytic CO2. In this article, we aim to review the research progress in the field of photocatalytic CO2 reduction reactions from two perspectives: reaction mechanisms and catalyst types. Emphasis is placed on the discussion of photocatalyst modification methods, including constructing hereto-junctions, metal doping, and morphology regulation. However, selecting suitable and efficient photocatalytic materials for producing high-value-added products needs to be improved. We have problems such as low CO2 conversion efficiency, poor selectivity of products obtained, and inability to scale up production, therefore, how to solve these problems is the focus of research in the photocatalytic CO2 reduction field in the future.
许丹, 于彩莲, 李芬, 杨莹, 李博琳, 芦柳, 蔺宇晨. CO2还原光催化材料研究进展[J]. 材料导报, 2024, 38(14): 23030280-8.
XU Dan, YU Cailian, LI Fen, YANG Ying, LI Bolin, LU Liu, LIN Yuchen. Research Progress in Photocatalytic Materials for CO2 Reduction. Materials Reports, 2024, 38(14): 23030280-8.
1 US department of commerce n. Global monitoring laboratory-carbon cycle greenhouse gases. https://gml.noaa.gov/ccgg/trends/global.html. 2 Maniarsu R. Energy & Environment, DOI:10.1177/0958305X221115092. 3 Corma A. ChemSusChem, 2020, 13(23), 6054. 4 Xiong X, Mao C, Yang Z, et al. Advanced Energy Materials, 2020, 10(46), 2002928. 5 Wu H, Kong X Y, Wen X, et al. Angewandte Chemie, 2021, 133(15), 8536. 6 Mohamed R M, Mkhalid I A, Alhaddad M, et al. Ceramics International, 2021, 47(19), 26779. 7 Zhao D, Xuan Y, Zhang K, et al. ChemSusChem, 2021, 14(16), 3293. 8 He J, Lyu P, Jiang B, et al. Applied Catalysis B: Environmental, 2021, 298, 120603. 9 Li K, Peng B, Peng T. ACS Catalysis, 2016, 6(11), 7485. 10 Sickerman N S, Hu Y, Ribbe M W. Chemistry-An Asian Journal, 2017, 12(16), 1985. 11 Pan F, Yang Y. Energy & Environmental Science, 2020, 13(8), 2275. 12 Hua Y N, Feng S G, Dang X Y, et al. Chemical Industry and Enginee-ring Progress, 2022, 41(3), 1224 (in Chinese). 华亚妮, 冯少广, 党欣悦, 等.化工进展, 2022, 41(3), 1224. 13 Fung C M, Tang J Y, Tan L L, et al. Materials Today Sustainability, 2020, 9,100037. 14 Tjandra A D, Huang J. Chinese Chemical Letters, 2018, 29(6), 734. 15 Halmann M. Nature, 1978, 275(5676), 115. 16 Inoue T, Fujishima A, Konishi S, et al. Nature, 1979, 277(5698),637. 17 Wang C, Sun Z, Zheng Y, et al. Journal of Materials Chemistry A, 2019, 7(3), 865. 18 Jiang M, Gao Y, Wang Z, et al. Applied Catalysis B: Environmental, 2016, 198, 180. 19 Alhebshi A, Sharaf Aldeen E, Mim R S, et al. International Journal of Energy Research, 2022, 46(5), 5523. 20 Kumagai H, Tamaki Y, Ishitani O. Accounts of Chemical Research, 2022, 55(7),978. 21 Kamal K M, Narayan R, Chandran N, et al. Applied Catalysis B: Environmental, 2022, 307,121181. 22 Chen P, Dong X, Huang M, et al. ACS Catalysis, 2022, 12(8), 4560. 23 Chen H, Wan K, Zheng F, et al. Renewable and Sustainable Energy Reviews, 2021, 147,111217. 24 Kong T, Jiang Y, Xiong Y. Chemical Society Reviews, 2020, 49(18),6579. 25 Zhang Q, Yang C, Guan A, et al. Nanoscale, 2022, 14(29),10268. 26 Albero J, Peng Y, García H. ACS Catalysis, 2020, 10(10), 5734. 27 Tang L Q, Jia Y, Zhu Z S, et al. Progress in Physics, 2020, 41(6), 254 (in Chinese). 唐兰勤, 贾茵, 朱志尚, 等.物理学进展, 2020, 41(6), 254. 28 Nguyen H L. Advanced Energy Materials, 2020, 10(46), 2002091. 29 Li K, Peng B, Peng T. ACS Catalysis, 2016, 6(11), 7485. 30 Samuel O, Othman M H D, Kamaludin R, et al. Ceramics International, 2022, 48(5),5845. 31 Yang K, Yang Z, Zhang C, et al. Chemical Engineering Journal, 2021, 418,129344. 32 Huang G, Zhang J, Jiang F, et al. Journal of Solid State Chemistry, 2020, 281, 121041. 33 Nguyen T D, Nguyen V H, Nanda S, et al. Environmental Chemistry Letters, 2020, 18(6), 1779. 34 Wang Y, Wang Q, Zhen X, et al. Nanoscale, 2013, 5(18), 8326. 35 Chen Y, Feng X, Guo X, et al. Current Opinion in Green and Sustainable Chemistry, 2019, 17, 21. 36 Mondal S, Yucknovsky A, Akulov K, et al. Journal of the American Chemical Society, 2019, 141(38),15413. 37 Zhou Y, Zahran E M, Quiroga B A, et al. Applied Catalysis B: Environmental, 2019, 248, 157. 38 Barrocas B T, Ambrožová N, Kocˇí K. Materials, 2022, 15(3), 967. 39 Low J, Yu J, Jaroniec M, et al. Advanced Materials, 2017, 29(20), 1601694. 40 Gan J Q, Hu H P, Su M, et al. Materials Reports, 2022, 36 (10), 5 (in Chinese). 甘建昌, 胡海平, 苏明,等.材料导报, 2022, 36(10), 5. 41 Hao W, Wang J, Xu S Y, et al. Materials Reports, 2023,37(20),22030313 (in Chinese). 郝玮, 王杰, 胥生元,等.材料导报, 2023,37(20),22030313. 42 Gong Y, Wang L L, Xu Y Q, et al. Materials Reports, 2020, 34 (S2), 1037(in Chinese). 巩云, 王龙龙, 徐亚琪, 等. 材料导报, 2020, 34(S2), 1037. 43 Wang S, She L, Zheng Q, et al. Industrial & Engineering Chemistry Research, 2023, 62(1), 455. 44 Shown I, Samireddi S, Chang Y C, et al. Nature Communications, 2018, 9(1),169. 45 Dai W, Yu J, Xu H, et al. CrystEngComm, 2016, 18(19),3472. 46 Fujishima A, Honda K. Nature, 1972, 238(5358),37. 47 Nolan M, Iwaszuk A, Lucid A K, et al. Advanced Materials, 2016, 28(27), 5425. 48 Yamashita H, Kamada N, He H, et al. Chemistry Letters, 1994, 23(5), 855. 49 Liu J, Niu Y, He X, et al. Journal of Nanomaterials, 2016, 2016, 1. 50 Gao Q, Yuan Z, Yang G, et al. Industrial Crops and Products, 2021, 160, 113161. 51 Liu M, Zheng L, Bao X, et al. Chemical Engineering Journal, 2021, 405, 126654. 52 Tahir B, Tahir M, Amin N A S. Clean Technologies and Environmental Policy, 2016, 18(7), 2147. 53 Jin J, Chen S, Wang J, et al. Applied Surface Science, 2019, 476, 937. 54 Lertthanaphol N, Pienutsa N, Chusri K, et al. ACS Omega, 2021, 6(51), 35769. 55 Hassan J Z, Raza A, Qumar U, et al. Sustainable Materials and Techno-logies, 2022, 33, e00478. 56 Perumal S, Lee W, Atchudan R. Chemosphere, 2022, 306,135521. 57 Kunioku H, Higashi M, Tomita O, et al. Journal of Materials Chemistry A, 2018, 6(7), 3100. 58 Zhang Y, Zhang G, Di J, et al. Current Opinion in Green and Sustainable Chemistry, 2023, 39,100718. 59 Li F, Zhang L, Chen X, et al. Physical Chemistry Chemical Physics, 2017, 19(32),21862. 60 Liu X, Xiao J, Ma S, et al. ChemNanoMat, 2021, 7(7), 684. 61 Liu Y, Huang B, Dai Y, et al. Catalysis Communications, 2009, 11(3), 210. 62 Wang X, Wang Y, Gao M, et al. Applied Catalysis B: Environmental, 2020, 270, 118876. 63 Liu T, Li H, Gao J, et al. Applied Surface Science, 2022, 579, 152135. 64 Ribeiro C S, Lansarin M A. Environmental Science and Pollution Research, 2021, 28(19), 23667. 65 Xiong S, Bao S, Wang W, et al. Applied Catalysis B: Environmental, 2022, 305, 121026. 66 Li J, Wei F, Xiu Z, et al. Chemical Engineering Journal, 2022, 446, 137129. 67 Qiu J, Guo M, Yang Z, et al. Applied Surface Science, 2023, 617,156605. 68 Silva Ribeiro C, Azário Lansarin M. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127,1059. 69 Zhang X, Ren G, Zhang C, et al. Catalysis Letters, 2020, 150(9),2510. 70 Zhao D, Xuan Y, Zhang K, et al. ChemSusChem, 2021, 14(16), 3293. 71 Zhou Y, Jiao W, Xie Y, et al. Journal of Colloid and Interface Science, 2022, 608, 2213. 72 Yang Y, Zhang C, Lai C, et al. Advances in Colloid and Interface Science, 2018, 254, 76. 73 Ye L, Jin X, Ji X, et al. Chemical Engineering Journal, 2016, 291, 39. 74 Zhang L, Wang W, Jiang D, et al. Nano Research, 2015, 8(3),821. 75 Wang P, Yang P, Bai Y, et al. Journal of the Taiwan Institute of Chemical Engineers, 2016, 68, 295. 76 Bai Y, Ye L, Wang L, et al. Environmental Science: Nano, 2016, 3(4), 902. 77 Liang J, Jiang Z, Wong P K, et al. Solar RRL, 2021, 5(2),2000478. 78 Sun Z, Wang H, Wu Z, et al. Catalysis Today, 2018, 300,160. 79 Goettmann F, Thomas A, Antonietti M. Angewandte Chemie International Edition, 2007, 46(15), 2717. 80 Li F, Zhang D, Xiang Q. Chemical Communications, 2020, 56(16), 2443. 81 Wang L, Zang L, Shen F, et al. Journal of Colloid and Interface Science, 2022, 622,336. 82 Wang L, Dong Y, Zhang J, et al. Journal of Solid State Chemistry, 2022, 308,122878. 83 Zhu X, Deng H, Cheng G. Inorganic Chemistry Communications, 2021, 132, 108814. 84 Guo L, You Y, Huang H, et al. Journal of Colloid and Interface Science, 2020, 568, 139. 85 Wang K, Li Q, Liu B, et al. Applied Catalysis B: Environmental, 2015, 176-177, 44. 86 Hsu H C, Shown I, Wei H Y, et al. Nanoscale, 2013, 5(1),262. 87 Gusain R, Kumar P, Sharma O P, et al. Applied Catalysis B: Environmental, 2016, 181,352. 88 Qian X, Zhang L, Lin Y, et al. Applied Surface Science, 2021, 568,150985. 89 Zhang J, Shi J, Tao S, et al. Applied Surface Science, 2021, 542,148685. 90 He J, Lyu P, Jiang B, et al. Applied Catalysis B: Environmental, 2021, 298, 120603.