Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 23030280-8    https://doi.org/10.11896/cldb.23030280
  无机非金属及其复合材料 |
CO2还原光催化材料研究进展
许丹, 于彩莲*, 李芬, 杨莹, 李博琳, 芦柳, 蔺宇晨
哈尔滨理工大学材料科学与化学工程学院,哈尔滨 150080
Research Progress in Photocatalytic Materials for CO2 Reduction
XU Dan, YU Cailian*, LI Fen, YANG Ying, LI Bolin, LU Liu, LIN Yuchen
School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China
下载:  全 文 ( PDF ) ( 8428KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 太阳能驱动二氧化碳转化为可持续的碳氢燃料是缓解能源危机和全球气候变暖问题的一条重要战略途径。选择高效且经济的光催化材料是实现光催化CO2转化为高附加值产物的关键。本文主要从光催化CO2还原反应机理、催化剂类型等方面综述了光催化CO2还原领域的研究进展,着重讨论了光催化剂改性策略,包括构筑异质结、金属掺杂、形貌调控等。目前,选择合适高效的光催化材料用以光催化CO2还原制备高附加值产物等方面尚存在些许不足,比如光催化CO2转化效率低、产物选择性差以及无法规模化投入生产等问题,因此如何解决上述问题是未来光催化CO2资源化领域的研究重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许丹
于彩莲
李芬
杨莹
李博琳
芦柳
蔺宇晨
关键词:  光催化  二氧化碳还原  光催化材料  半导体  高附加值产物    
Abstract: One meaningful and strategic way to alleviate the energy crisis and global warming issues is to use hydrocarbon fuels converted using solar energy from carbon dioxide (CO2). Choosing efficient and economical photocatalytic materials is the key to obtaining high-value-added products from photocatalytic CO2. In this article, we aim to review the research progress in the field of photocatalytic CO2 reduction reactions from two perspectives: reaction mechanisms and catalyst types. Emphasis is placed on the discussion of photocatalyst modification methods, including constructing hereto-junctions, metal doping, and morphology regulation. However, selecting suitable and efficient photocatalytic materials for producing high-value-added products needs to be improved. We have problems such as low CO2 conversion efficiency, poor selectivity of products obtained, and inability to scale up production, therefore, how to solve these problems is the focus of research in the photocatalytic CO2 reduction field in the future.
Key words:  photocatalysis    carbon dioxide reduction    photocatalytic material    semiconductor    high value-added products
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  TQ426  
基金资助: 国家自然科学基金(22278100)
通讯作者:  * 于彩莲,哈尔滨理工大学材料科学与化学工程学院教授,1999年东北农业大学农业环境保护专业毕业,2003年东北农业大学植物营养学专业毕业后到哈尔滨理工大学工作至今,2011年哈尔滨理工大学材料学专业博士毕业,目前主要从事农业废弃物资源化以及清洁能源生产的研究工作,发表论文30余篇。lgyucailian@163.com   
作者简介:  许丹,现为哈尔滨理工大学材料科学与化学工程学院资源与环境专业研究生,在于彩莲教授的指导下进行研究。目前主要研究领域为光催化功能材料的制备及在环境保护和清洁能源生产中的应用。
引用本文:    
许丹, 于彩莲, 李芬, 杨莹, 李博琳, 芦柳, 蔺宇晨. CO2还原光催化材料研究进展[J]. 材料导报, 2024, 38(14): 23030280-8.
XU Dan, YU Cailian, LI Fen, YANG Ying, LI Bolin, LU Liu, LIN Yuchen. Research Progress in Photocatalytic Materials for CO2 Reduction. Materials Reports, 2024, 38(14): 23030280-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030280  或          http://www.mater-rep.com/CN/Y2024/V38/I14/23030280
1 US department of commerce n. Global monitoring laboratory-carbon cycle greenhouse gases. https://gml.noaa.gov/ccgg/trends/global.html.
2 Maniarsu R. Energy & Environment, DOI:10.1177/0958305X221115092.
3 Corma A. ChemSusChem, 2020, 13(23), 6054.
4 Xiong X, Mao C, Yang Z, et al. Advanced Energy Materials, 2020, 10(46), 2002928.
5 Wu H, Kong X Y, Wen X, et al. Angewandte Chemie, 2021, 133(15), 8536.
6 Mohamed R M, Mkhalid I A, Alhaddad M, et al. Ceramics International, 2021, 47(19), 26779.
7 Zhao D, Xuan Y, Zhang K, et al. ChemSusChem, 2021, 14(16), 3293.
8 He J, Lyu P, Jiang B, et al. Applied Catalysis B: Environmental, 2021, 298, 120603.
9 Li K, Peng B, Peng T. ACS Catalysis, 2016, 6(11), 7485.
10 Sickerman N S, Hu Y, Ribbe M W. Chemistry-An Asian Journal, 2017, 12(16), 1985.
11 Pan F, Yang Y. Energy & Environmental Science, 2020, 13(8), 2275.
12 Hua Y N, Feng S G, Dang X Y, et al. Chemical Industry and Enginee-ring Progress, 2022, 41(3), 1224 (in Chinese).
华亚妮, 冯少广, 党欣悦, 等.化工进展, 2022, 41(3), 1224.
13 Fung C M, Tang J Y, Tan L L, et al. Materials Today Sustainability, 2020, 9,100037.
14 Tjandra A D, Huang J. Chinese Chemical Letters, 2018, 29(6), 734.
15 Halmann M. Nature, 1978, 275(5676), 115.
16 Inoue T, Fujishima A, Konishi S, et al. Nature, 1979, 277(5698),637.
17 Wang C, Sun Z, Zheng Y, et al. Journal of Materials Chemistry A, 2019, 7(3), 865.
18 Jiang M, Gao Y, Wang Z, et al. Applied Catalysis B: Environmental, 2016, 198, 180.
19 Alhebshi A, Sharaf Aldeen E, Mim R S, et al. International Journal of Energy Research, 2022, 46(5), 5523.
20 Kumagai H, Tamaki Y, Ishitani O. Accounts of Chemical Research, 2022, 55(7),978.
21 Kamal K M, Narayan R, Chandran N, et al. Applied Catalysis B: Environmental, 2022, 307,121181.
22 Chen P, Dong X, Huang M, et al. ACS Catalysis, 2022, 12(8), 4560.
23 Chen H, Wan K, Zheng F, et al. Renewable and Sustainable Energy Reviews, 2021, 147,111217.
24 Kong T, Jiang Y, Xiong Y. Chemical Society Reviews, 2020, 49(18),6579.
25 Zhang Q, Yang C, Guan A, et al. Nanoscale, 2022, 14(29),10268.
26 Albero J, Peng Y, García H. ACS Catalysis, 2020, 10(10), 5734.
27 Tang L Q, Jia Y, Zhu Z S, et al. Progress in Physics, 2020, 41(6), 254 (in Chinese).
唐兰勤, 贾茵, 朱志尚, 等.物理学进展, 2020, 41(6), 254.
28 Nguyen H L. Advanced Energy Materials, 2020, 10(46), 2002091.
29 Li K, Peng B, Peng T. ACS Catalysis, 2016, 6(11), 7485.
30 Samuel O, Othman M H D, Kamaludin R, et al. Ceramics International, 2022, 48(5),5845.
31 Yang K, Yang Z, Zhang C, et al. Chemical Engineering Journal, 2021, 418,129344.
32 Huang G, Zhang J, Jiang F, et al. Journal of Solid State Chemistry, 2020, 281, 121041.
33 Nguyen T D, Nguyen V H, Nanda S, et al. Environmental Chemistry Letters, 2020, 18(6), 1779.
34 Wang Y, Wang Q, Zhen X, et al. Nanoscale, 2013, 5(18), 8326.
35 Chen Y, Feng X, Guo X, et al. Current Opinion in Green and Sustainable Chemistry, 2019, 17, 21.
36 Mondal S, Yucknovsky A, Akulov K, et al. Journal of the American Chemical Society, 2019, 141(38),15413.
37 Zhou Y, Zahran E M, Quiroga B A, et al. Applied Catalysis B: Environmental, 2019, 248, 157.
38 Barrocas B T, Ambrožová N, Kocˇí K. Materials, 2022, 15(3), 967.
39 Low J, Yu J, Jaroniec M, et al. Advanced Materials, 2017, 29(20), 1601694.
40 Gan J Q, Hu H P, Su M, et al. Materials Reports, 2022, 36 (10), 5 (in Chinese).
甘建昌, 胡海平, 苏明,等.材料导报, 2022, 36(10), 5.
41 Hao W, Wang J, Xu S Y, et al. Materials Reports, 2023,37(20),22030313 (in Chinese).
郝玮, 王杰, 胥生元,等.材料导报, 2023,37(20),22030313.
42 Gong Y, Wang L L, Xu Y Q, et al. Materials Reports, 2020, 34 (S2), 1037(in Chinese).
巩云, 王龙龙, 徐亚琪, 等. 材料导报, 2020, 34(S2), 1037.
43 Wang S, She L, Zheng Q, et al. Industrial & Engineering Chemistry Research, 2023, 62(1), 455.
44 Shown I, Samireddi S, Chang Y C, et al. Nature Communications, 2018, 9(1),169.
45 Dai W, Yu J, Xu H, et al. CrystEngComm, 2016, 18(19),3472.
46 Fujishima A, Honda K. Nature, 1972, 238(5358),37.
47 Nolan M, Iwaszuk A, Lucid A K, et al. Advanced Materials, 2016, 28(27), 5425.
48 Yamashita H, Kamada N, He H, et al. Chemistry Letters, 1994, 23(5), 855.
49 Liu J, Niu Y, He X, et al. Journal of Nanomaterials, 2016, 2016, 1.
50 Gao Q, Yuan Z, Yang G, et al. Industrial Crops and Products, 2021, 160, 113161.
51 Liu M, Zheng L, Bao X, et al. Chemical Engineering Journal, 2021, 405, 126654.
52 Tahir B, Tahir M, Amin N A S. Clean Technologies and Environmental Policy, 2016, 18(7), 2147.
53 Jin J, Chen S, Wang J, et al. Applied Surface Science, 2019, 476, 937.
54 Lertthanaphol N, Pienutsa N, Chusri K, et al. ACS Omega, 2021, 6(51), 35769.
55 Hassan J Z, Raza A, Qumar U, et al. Sustainable Materials and Techno-logies, 2022, 33, e00478.
56 Perumal S, Lee W, Atchudan R. Chemosphere, 2022, 306,135521.
57 Kunioku H, Higashi M, Tomita O, et al. Journal of Materials Chemistry A, 2018, 6(7), 3100.
58 Zhang Y, Zhang G, Di J, et al. Current Opinion in Green and Sustainable Chemistry, 2023, 39,100718.
59 Li F, Zhang L, Chen X, et al. Physical Chemistry Chemical Physics, 2017, 19(32),21862.
60 Liu X, Xiao J, Ma S, et al. ChemNanoMat, 2021, 7(7), 684.
61 Liu Y, Huang B, Dai Y, et al. Catalysis Communications, 2009, 11(3), 210.
62 Wang X, Wang Y, Gao M, et al. Applied Catalysis B: Environmental, 2020, 270, 118876.
63 Liu T, Li H, Gao J, et al. Applied Surface Science, 2022, 579, 152135.
64 Ribeiro C S, Lansarin M A. Environmental Science and Pollution Research, 2021, 28(19), 23667.
65 Xiong S, Bao S, Wang W, et al. Applied Catalysis B: Environmental, 2022, 305, 121026.
66 Li J, Wei F, Xiu Z, et al. Chemical Engineering Journal, 2022, 446, 137129.
67 Qiu J, Guo M, Yang Z, et al. Applied Surface Science, 2023, 617,156605.
68 Silva Ribeiro C, Azário Lansarin M. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127,1059.
69 Zhang X, Ren G, Zhang C, et al. Catalysis Letters, 2020, 150(9),2510.
70 Zhao D, Xuan Y, Zhang K, et al. ChemSusChem, 2021, 14(16), 3293.
71 Zhou Y, Jiao W, Xie Y, et al. Journal of Colloid and Interface Science, 2022, 608, 2213.
72 Yang Y, Zhang C, Lai C, et al. Advances in Colloid and Interface Science, 2018, 254, 76.
73 Ye L, Jin X, Ji X, et al. Chemical Engineering Journal, 2016, 291, 39.
74 Zhang L, Wang W, Jiang D, et al. Nano Research, 2015, 8(3),821.
75 Wang P, Yang P, Bai Y, et al. Journal of the Taiwan Institute of Chemical Engineers, 2016, 68, 295.
76 Bai Y, Ye L, Wang L, et al. Environmental Science: Nano, 2016, 3(4), 902.
77 Liang J, Jiang Z, Wong P K, et al. Solar RRL, 2021, 5(2),2000478.
78 Sun Z, Wang H, Wu Z, et al. Catalysis Today, 2018, 300,160.
79 Goettmann F, Thomas A, Antonietti M. Angewandte Chemie International Edition, 2007, 46(15), 2717.
80 Li F, Zhang D, Xiang Q. Chemical Communications, 2020, 56(16), 2443.
81 Wang L, Zang L, Shen F, et al. Journal of Colloid and Interface Science, 2022, 622,336.
82 Wang L, Dong Y, Zhang J, et al. Journal of Solid State Chemistry, 2022, 308,122878.
83 Zhu X, Deng H, Cheng G. Inorganic Chemistry Communications, 2021, 132, 108814.
84 Guo L, You Y, Huang H, et al. Journal of Colloid and Interface Science, 2020, 568, 139.
85 Wang K, Li Q, Liu B, et al. Applied Catalysis B: Environmental, 2015, 176-177, 44.
86 Hsu H C, Shown I, Wei H Y, et al. Nanoscale, 2013, 5(1),262.
87 Gusain R, Kumar P, Sharma O P, et al. Applied Catalysis B: Environmental, 2016, 181,352.
88 Qian X, Zhang L, Lin Y, et al. Applied Surface Science, 2021, 568,150985.
89 Zhang J, Shi J, Tao S, et al. Applied Surface Science, 2021, 542,148685.
90 He J, Lyu P, Jiang B, et al. Applied Catalysis B: Environmental, 2021, 298, 120603.
[1] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[2] 列维茨基·谢尔盖, 曹泽祥, 柯巴·亚历山大, 柯巴·玛丽亚. 激光辐射波长和脉冲寿命对碲化镉熔化阈值的影响[J]. 材料导报, 2024, 38(7): 22120127-6.
[3] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[4] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[5] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[6] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[7] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[8] 林坚, 张松林, 王悦安, 孙浩, 聂钰昌, 陈德睢. 氧化镍空穴材料在Ⅱ-Ⅵ族量子点电致发光器件中的应用进展[J]. 材料导报, 2024, 38(14): 22100205-8.
[9] 赵强, 李淑英, 郭智楠, 许琳, 赵一博, 吕靖, 尚建鹏, 郭永, 王俊丽. 氧化亚铜基光催化剂的制备及降解性能研究进展[J]. 材料导报, 2024, 38(14): 22110145-15.
[10] 朱杰, 凌敏, 马润东, 王瑞芬, 安胜利. 高活性BiOI/g-C3N4光催化剂的合成及性能提高机制[J]. 材料导报, 2024, 38(11): 23010115-7.
[11] 于巧玲, 刘成宝, 金涛, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. CuS/CQDs/g-C3N4复合材料的合成及光催化性能[J]. 材料导报, 2024, 38(11): 22090279-7.
[12] 林立海, 李处森, 颜雨坤, 白炜琛, 刘利冉, 张劲松. 热解碳泡沫材料吸波机理研究[J]. 材料导报, 2024, 38(1): 22050338-7.
[13] 尹嘉琦, 沈文锋, 吕大伍, 赵京龙, 胡鹏飞, 宋伟杰. 金属氧化物半导体MEMS气体传感器研究进展[J]. 材料导报, 2024, 38(1): 22070075-14.
[14] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[15] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed