Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 23030267-7    https://doi.org/10.11896/cldb.23030267
  金属与金属基复合材料 |
贝氏体钢时效处理富Cu团簇析出特点及其第一性原理计算
杨劼, 任慧平*, 王海燕, 高雪云, 刘宗昌
内蒙古科技大学材料与冶金学院,内蒙古 包头 014010
Precipitation Characteristics and First-principles Calculation of Cu-Rich Clusters in Bainite Steel Aged Treatment
YANG Jie, REN Huiping*, WANG Haiyan, GAO Xueyun, LIU Zongchang
College of Materials and Metallurgy, Inner Mongolian University of Science and Technology, Baotou 014010, Inner Mongolia, China
下载:  全 文 ( PDF ) ( 12520KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究低碳贝氏体钢(15Cr12CuSiMoMn)时效处理过程中富Cu团簇的析出演变特点,并基于第一性原理计算,采用特殊准随机结构(Special quasirandom structures, SQS)、Solid-State Nudged Elastic Band(SSNEB)方法构建Fe-Cu二元体系的无序固溶体结构模型,模拟计算相变能量路径,分析并表征析出相析出演变规律与模拟计算之间的相互联系。结果表明,实验钢在指定温度(500 ℃)进行时效热处理,时效处理各阶段实验钢中弥散析出约2.6~53 nm的富Cu团簇,以共格、非共格状态存在于基体中;经模拟计算,BCC-Cu向9R-Cu转变过程中需在开始阶段克服8.9 meV的能垒,之后从9R-Cu向孪晶FCC-Cu+9R-Cu结构转变过程中需要克服4.9 meV的能垒;非稳态BCC富Cu团簇与稳定态的FCC Cu之间具有0.14 eV/atom的形成能差,当Cu含量超过21.6%(原子分数)后,富Cu团簇从BCC结构不断向稳定的纯FCC-Cu结构演变。从能量角度分析了富Cu团簇析出倾向,解释了富Cu团簇的析出惯序,有利于优化贝氏体组织,为含Cu贝氏体沉淀钢的深入研究及相关领域的开发拓展提供理论参考依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨劼
任慧平
王海燕
高雪云
刘宗昌
关键词:  15Cr12CuSiMoMn钢  富Cu团簇  时效处理  结构转变    
Abstract: The evolution characteristics of Cu-rich clusters in the aging process of low carbon bainitic steel (15Cr12CuSiMoMn) were studied. Based on the calculation of first principles, the disordered solid solution structure model of Fe-Cu binary system was constructed by SQS, SSNEB method, and the energy path of phase transition was simulated. The relationship between the evolution rule of precipitated phase and the simulation calculation was analyzed and characterized. The results show that the experimental steel is aged at a specified temperature (500 ℃), and about 2.6—53 nm of Cu-rich clusters are separated from the experimental steel at each stage of aging treatment, and exist in the matrix in coherent and non-coherent states. According to the simulation calculation, the energy barrier of 8.9 meV should be overcome during the transition from BCC-Cu to 9R-Cu, and 4.9 meV should be overcome during the transition from 9R-Cu to twin FCC-Cu+9R-Cu. There is a 0.14 eV/atom difference between the transient BCC Cu clusters and the stable FCC Cu clusters. When the Cu content exceeds 21.6at%, the Cu rich clusters evolve from BCC structure to stable FCC-Cu structure. By analyzing the precipitation tendency of Cu-rich clusters from the perspective of energy, the precipitation habit sequence of Cu-rich clusters is explained, which is conducive to the optimization of bainite structure, and provides a theoretical reference for the further study of Cu-containing bainite precipitation steel and the development of related fields.
Key words:  15Cr12CuSiMoMn steel    Cu-rich clusters    aging treatment    structural transformation
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  TG142.1  
基金资助: 国家自然科学基金(51764047)
通讯作者:  * 任慧平,内蒙古科技大学教授、博士研究生导师。1981.09—1985.07 包头钢铁学院金属材料及热处理专业学习;1987.09—1990.07 北京科技大学材料学专业读研究生,获硕士学位;1997.09—2001.03北京科技大学材料学专业读研究生,获博士学位。主要从事稀土在钢铁材料中应用的基础研究。renhuiping@imust.edu.cn   
作者简介:  杨劼,2017年6月毕业于内蒙古科技大学,获得硕士学位。于2017年9月至今在内蒙古科技大学攻读博士研究生学位,在任慧平教授的指导下进行研究。目前主要从事贝氏体高强钢相关研究。
引用本文:    
杨劼, 任慧平, 王海燕, 高雪云, 刘宗昌. 贝氏体钢时效处理富Cu团簇析出特点及其第一性原理计算[J]. 材料导报, 2024, 38(14): 23030267-7.
YANG Jie, REN Huiping, WANG Haiyan, GAO Xueyun, LIU Zongchang. Precipitation Characteristics and First-principles Calculation of Cu-Rich Clusters in Bainite Steel Aged Treatment. Materials Reports, 2024, 38(14): 23030267-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030267  或          http://www.mater-rep.com/CN/Y2024/V38/I14/23030267
1 Sen I, Amankwah E, Kumar N S, et al. Materials Science & Engineering A, 2011, 528(13-14), 44.
2 Zhang C, Dong J, Liu W, et al. Acta Metallurgica Sinica, 2010, 46(9), 41(in Chinese).
张弛, 董洁, 刘伟, 等. 金属学报, 2010, 46(9), 41.
3 Isheim D, Vaynman S, Fine M E, et al. Scripta Materialia, 2008, 59(12), 35.
4 Monzen R, Iguchi M, Jenkins M L. Philosophical Magazine Letters, 2000, 80(3), 137.
5 Lee T H, Kim Y O, Kim S J. Philosophical Magazine, 2007, 87(2), 209.
6 Xu G, Chu D, Cai L, et al. Acta Metallurgica Sinica, 2011, 47(7), 905(in Chinese).
徐工, 楚迪, 蔡琳, 等. 金属学报, 2011, 47(7), 905.
7 Isheim D, Kolli R P, Fine M E, et al. Scripta Materialia, 2006, 55(1), 35.
8 Miller M K, Russell K F. Journal of Nuclear Materials, 2007, 371(1-3), 145.
9 Xiang H L, Fan J C, Liu D, et al. Acta Metallurgica Sinica, 2012, 48(9), 81(in Chinese).
向红亮, 范金春, 刘东, 等. 金属学报, 2012, 48(9), 81.
10 Xiang H L, Fan J C, Liu D, et al. Acta Metallurgica Sinica, 2013, 32(7), 241(in Chinese).
向红亮, 范金春, 刘东, 等. 金属学报, 2013, 32(7), 241.
11 Han G, Hu B, Yu Y S, et al. Materials Characterization, 2020, 131(1-3), 145.
12 Han G, Shang C J, Misra R, et al. Physica B Condensed Matter, 2019, 31(7), 569.
13 Han G, Xie Z J, Lei B, et al. Materials Science and Engineering A, 2018, 87(2), 901.
14 Kresse G, Joubert D. Acta Materialia, 2012, 60(20), 72.
15 Titahara R, Riromotol D. Acta Materialia, 2005, 34(4), 179.
16 Takayama. Acta Materialia, 2012, 43(3), 409.
17 Guo Z, Lee C S, Morris J W. Acta Materialia, 2004, 52(19), 5511.
18 Kaneshita T, Miyamoto G, Furuhara T. Acta Materialia, 2017, 27(11), 368.
19 Gong X F , Yang G X , Fu Y H , et al. Computational Materials Science,2009, 47(7), 129.
20 Wang Y ,Hou H ,Yin J , et al. Computational Materials Science,2008, 27(2), 233.21 Kimura M, Gao X, Bai Y, et al. Materials Characterization, 2012, 67, 34.
22 Salje K, Gao F. Materials Science and Engineering A, 2013, 55(1), 231.
23 Heo C, Joao Q, Li L M, et al. Applied Mechanics & Materials, 2012, 7(8), 173.
[1] 殷晓龙, 王志林, 王婉, 于贺春, 王汉斌, 闫文杰. 深冷挤出切削制备超细晶7075铝合金的组织、性能及时效行为研究[J]. 材料导报, 2023, 37(22): 22070192-6.
[2] 陈宇强, 张文涛, 张浩, 潘素平, 李运湘, 李宁波, 欧陈贵, 伏明珠, 阳铭广. T6I6处理对Al-Si-Mg-Cu铸铝时效析出及疲劳行为的影响[J]. 材料导报, 2020, 34(14): 14122-14128.
[3] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[4] 唐昌平, 李国栋, 李志云, 孙玹琪. 铸造Mg-Gd-Y-Nd-Zr合金在时效过程中的组织与性能演变[J]. 《材料导报》期刊社, 2018, 32(4): 574-578.
[5] 万永强,胡小武,徐涛,李玉龙,江雄心. Cu/Sn37Pb/Cu钎焊接头界面微观结构及其剪切性能[J]. 《材料导报》期刊社, 2018, 32(12): 2003-2007.
[6] 周天国, 陈田田, 苏鑫, 徐瑞, 吴晓玉, 胡静. 多道次ECAE动态成型Al-Mg-Si合金导线组织与性能*[J]. 《材料导报》期刊社, 2017, 31(8): 17-20.
[7] 卢盼盼, 王爱琴, 谢敬佩, 王文焱. 时效处理对4A双相不锈钢σ相析出及性能的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 76-80.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed