Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 23030255-8    https://doi.org/10.11896/cldb.23030255
  高分子与聚合物基复合材料 |
超级柔韧性和优异电磁屏蔽性能的PVA-co-PE纳米纤维覆铜膜
陶德昌1, 文鑫1, 李雪丽2, 严坤1, 赵青华1, 夏明1, 杨晨光1,*, 王栋1,*
1 武汉纺织大学纺织纤维及制品教育部重点实验室,武汉 430200
2 武汉高德红外股份有限公司, 武汉 430205
PVA-co-PE Nanofiber Copper Coated Film with Super Flexibility and Excellent Electromagnetic Shielding Performance
TAO Dechang1, WEN Xin1, LI Xueli2, YAN Kun1, ZHAO Qinghua1, XIA Ming1, YANG Chenguang1,*, WANG Dong1,*
1 Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
2 Wuhan Guide Infrared Co., Ltd., Wuhan 430205, China
下载:  全 文 ( PDF ) ( 12563KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作通过紫外辐射诱导和化学还原反应相结合成功制备了具有多级结构的聚乙烯醇-聚乙烯(PVA-co-PE)纳米纤维覆铜膜,PVA-co-PE纳米纤维覆铜膜具有超级柔韧性能和电磁屏蔽性能,且具有多次循环压缩后性能不减的稳定性。首先通过紫外辐照引入一定量的活化羟基,然后通过静电配位和铜粒子的化学还原作用,在纳米纤维膜上实现无钯镀铜。采用傅里叶红外光谱仪(AIR-FTIR)、能量色散型X射线荧光分析仪(EDX-7000)、扫描电子显微镜(SEM)等对样品进行结构性能分析。结果表明,成功实现PVA-co-PE纳米纤维覆铜膜的制备,SEM图表明,铜颗粒均匀分布于纳米纤维膜表面,并且薄膜由亲水转变为不易浸润。通过四探针仪器和矢量网络分析仪表征了薄膜材料的导电性和电磁屏蔽性能。结果表明,覆铜膜达到导体水平,吸波值达到47.3 dB。经过多次循环压缩后覆铜膜材料电磁屏蔽性能几乎不减,说明制得的纳米纤维覆铜膜具有优异的柔韧性和吸波稳定性,其在柔性智能可穿戴元器件领域具有广阔的应用空间。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陶德昌
文鑫
李雪丽
严坤
赵青华
夏明
杨晨光
王栋
关键词:  PVA-co-PE纳米纤维膜  化学镀铜  导电性  疏水性  电磁屏蔽    
Abstract: In this work, a copper-clad polyvinyl alcohol polyethylene (PVA-co-PE) nanofiber film with a multi-level structure was successfully prepared by combining ultraviolet radiation induction and chemical reduction reactions. It exhibits super flexibility and electromagnetic shielding properties, and has stability without degradation after repeated cyclic compression. Firstly, a certain amount of activated hydroxyl groups is introduced through ultraviolet irradiation, and then palladium free copper plating of nanofiber membranes is carried out through electrostatic coordination and chemical reduction of copper particles. Fourier transform infrared spectroscopy (AIR-FTIR), energy dispersive X-ray fluorescence analyzer (EDX-7000), and scanning electron microscopy (SEM) were used to analyze the structure and properties of the samples. The results showed that the preparation of PVA-co-PE nanofiber copper-clad film has been successfully achieved. The SEM images showed that copper particles are uniformly distributed on the surface of the nanofiber film, and the film had a hydrophilic transition to not easy to soak. The electrical conductivity and electromagnetic shielding properties of the film material were characterized by a four-probe instrument and a vector network analyzer. The results showed that the copper-clad film reached the conductor level and the absorption value was 47.3 dB. After repeated cyclic compression, the electromagnetic shielding performance of the copper-clad film material hardly decreases, indicating that the nano fiber copper clad film prepared in this work has excellent flexibility and wave absorbing stability. This has broad application space in the field of flexible intelligent wearable components.
Key words:  PVA-co-PE nanofiber film    electroless copper plating    electrical conductivity    hydrophobicity    electromagnetic shielding
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  TQ328  
基金资助: 国家自然科学基金(12205225;U20A20257);湖北省揭榜制科技项目(2022BEC018)
通讯作者:  * 杨晨光,武汉纺织大学副教授、硕士研究生导师。2014年于郑州大学化工学院获得学士学位,2019年于中国科学院大学无机化学专业获得博士学位。目前已发表高水平学术论文30余篇,撰写中英文著作2部2个章节,申请发明专利10余项,授权4项,主持国家自然科学基金、省部级基金、研究生教改项目和中石化合作横向项目等6项。cgyang@wtu.edu.cn
王栋,二级教授,博士研究生导师,现任武汉纺织大学党委常委、研究生院院长、学科办主任,纺织纤维及制品教育部重点实验室主任。2008年2月博士毕业于美国加州大学戴维斯分校,获得博士学位。国家“万人计划”青年拔尖人才、教育部“新世纪优秀人才”,享受国务院政府特殊津贴。荣获全国五一劳动奖章(2023)、美国纤维学会杰出成就奖、中国青年科技奖、中国纺织工程学会纺织学术大奖、纺织学术带头人、纺织青年科技奖、全国纺织青年科技创新领军人才称号等。长期致力于先进纤维新材料及其与生物、电子、能源、环境等交叉学科领域的创新研究工作,在Advanced Functional Materials、Angewandte Chemie International Edition、AppliedCatalysis B, Environmental、Chemical Engineering Journal等学术期刊上发表SCI论文200余篇,授权中国发明专利180余项,编著及合著中英文书籍4部。承担国家自然科学基金、国家重点研发计划、国家科技支撑计划、国家“863”纳米专项等项目30余项。wangdon08@126.com   
作者简介:  陶德昌,2021年7月于湖南工程学院获纺织工程专业学士学位。目前为武汉纺织大学技术研究院硕士研究生。主要研究领域为纤维材料改性。
引用本文:    
陶德昌, 文鑫, 李雪丽, 严坤, 赵青华, 夏明, 杨晨光, 王栋. 超级柔韧性和优异电磁屏蔽性能的PVA-co-PE纳米纤维覆铜膜[J]. 材料导报, 2024, 38(14): 23030255-8.
TAO Dechang, WEN Xin, LI Xueli, YAN Kun, ZHAO Qinghua, XIA Ming, YANG Chenguang, WANG Dong. PVA-co-PE Nanofiber Copper Coated Film with Super Flexibility and Excellent Electromagnetic Shielding Performance. Materials Reports, 2024, 38(14): 23030255-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030255  或          http://www.mater-rep.com/CN/Y2024/V38/I14/23030255
1 Luo M, Li M, Lu Y, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640, 128419.
2 Wen X, Yang C, Li Z, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130329.
3 Webb D P, Jaggernauth W A, Cottrill M, et al. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2010, 224(6), 785.
4 Gomri C, Cretin M, Semsarilar M. Carbohydrate Polymers, 2022, 294, 119790.
5 Mohammadtaheri S, Jaleh B, Mohazzab B, et al. Surface and Coatings Technology, 2020, 399, 126198.
6 Zheng A, Jin L, Yang J, et al. Acta Chimica Sinica, 2022, 80(5), 659 (in Chinese).
郑安妮 金磊, 杨家强, 等. 化学学报, 2022, 80(5), 659.
7 Zou X, Zhang X, Wang S, et al. Nonferrous Metals Engineering, 2019, 9(4),14 (in Chinese).
邹信, 张学敏, 王三反, 等.有色金属工程, 2019, 9(4), 14.
8 Liu Q, Zhou Z, Xia M, et al. RSC Advances, 2014, 4(77), 40788.
9 Agu C, Nwosu-Obieogu K, Ani K, et al. Cleaner Chemical Engineering, 2022, 3, 100035.
10 Zhang J. Synthetic Fiber, 2010, 39(7), 4 (in Chinese).
张吉升.合成纤维, 2010, 39(7), 4.
11 Ortega-Hernández N, Ortega-Romero M, Medeiros-Domingo M, et al. Analytical Letters, 2022, 55(15), 2370.
12 Holtomo O, Harison N M, Nsangou M, et al. Computational and Theore-tical Chemistry, 2022, 1214, 113798.
13 Shin J, Choi G, Hong S. Applied Surface Science, 2022, 574, 151571.
14 Yang L, Lin Y, Zhang J, et al. Journal of Colloid and Interface Science, 2022, 625, 532.
15 Cheng P, Wang X, Liu Y, et al. Applied Surface Science, 2020, 506, 144664.
16 Fritz N, Koo H C, Wilson Z, et al. Journal of the Electrochemical Society, 2012, 159(6), D386.
17 Wu S, Kang E, Neoh K, et al. Langmuir, 2000, 16(11), 5192.
18 Li G, Zhang Y, Dang P, et al. Materials Reports, 2022, 36(S2), 5 (in Chinese).
李国兴, 张永甲, 党朋, 等.材料导报, 2022, 36(S2), 5.
19 Zhang L Q, Yang S G, Li L, et al. ACS Applied Materials & Interfaces, 2018, 10(46), 40156.
20 Weng C, Wang G, Dai Z, et al. Nanoscale, 2019, 11(47), 22804.
21 Moglie F, Micheli D, Laurenzi S, et al. Carbon, 2012, 50(5), 1972.
22 Yang Y, Gupta M C, Dudley K L, et al. Nano Letters, 2005, 5(11), 2131.
23 Kumar R, Dhakate S R, Gupta T, et al. Journal of Materials Chemistry A, 2013, 1(18), 5727.
24 Wang H, Zheng K, Zhang X, et al. Composites Science and Technology, 2016, 125, 22.
25 Ling J, Zhai W, Feng W, et al. ACS Applied Materials & Interfaces, 2013, 5(7), 2677.
26 Cheng Y, Lu Y, Xia M, et al. Composites Science and Technology, 2021, 215, 109023.
[1] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[2] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[3] 苏秉尧, 王斌, 侯林伟, 王恒, 赵建伟, 贺辛亥, 袁亚蓉. 柔性碳/三聚氰胺复合泡沫的电磁屏蔽与传感特性[J]. 材料导报, 2024, 38(5): 22070159-7.
[4] 何丽红, 马悦帆, 杨克, 徐心硕, 李青林. 水性有机硅改性环氧树脂的制备与性能[J]. 材料导报, 2024, 38(3): 22050109-5.
[5] 史书源, 安秋凤, 邱甲云. TiO2/有机硅溶胶改性含氟苯丙乳液的制备及性能表征[J]. 材料导报, 2023, 37(8): 21110053-8.
[6] 方亚超, 潘明熙, 黄惠, 何亚鹏, 张盼盼, 杨聪庆, 郭忠诚, 陈步明. 电子级超细树枝状铜粉的抗氧化性研究[J]. 材料导报, 2023, 37(7): 21090292-7.
[7] 孙怡坤, 朱召贤, 王涛, 牛波, 龙东辉. 耐400 ℃高温氰酸酯导电胶的制备与性能[J]. 材料导报, 2023, 37(5): 21060190-5.
[8] 王丽丽, 唐杰, 秦陆洋, 李雪莎, 聂朝胤. 基于硅溶胶形核剂的柔性二氧化硅气凝胶的研究[J]. 材料导报, 2023, 37(24): 22080230-6.
[9] 付宁宁, 谢绍兴, 周禄军, 丁亚萍, 孟凡彬. 电纺碳纳米纤维/石墨烯气凝胶薄膜的可控制备与电磁屏蔽性能研究[J]. 材料导报, 2023, 37(24): 22090180-5.
[10] 张道琦, 张林, 郭晓, 王恩刚. Cu-Ag高强高导合金的研究现状与进展[J]. 材料导报, 2023, 37(13): 21040152-6.
[11] 朱慧慧, 徐允良, 胡朝帅, 褚宏宇, 朱亚明, 程俊霞, 赵雪飞. 芳香类重质油基针状焦的制备及表征[J]. 材料导报, 2023, 37(11): 21070270-5.
[12] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[13] 秦青青, 胡应模, 秦舒浩, 杨园园, 雷婷, 李科褡, 武晓, 郭素芳. PVC基电磁屏蔽复合材料的制备及研究进展[J]. 材料导报, 2022, 36(Z1): 21110177-8.
[14] 刘伟, 贾琨, 谷建宇, 马晨, 魏学红. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报, 2022, 36(9): 21020136-5.
[15] 温泽明, 陈剑英, 王越平, 肖红. 镓基液态金属在可穿戴器件与智能服装上的应用研究进展[J]. 材料导报, 2022, 36(9): 20080043-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed