Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 22070159-7    https://doi.org/10.11896/cldb.22070159
  高分子与聚合物基复合材料 |
柔性碳/三聚氰胺复合泡沫的电磁屏蔽与传感特性
苏秉尧1,2, 王斌1,2,*, 侯林伟1,2, 王恒1,2, 赵建伟1,2, 贺辛亥1,2,*, 袁亚蓉1
1 西安工程大学材料工程学院,西安 710048
2 西安市纺织复合材料重点实验室,西安 710048
Electromagnetic Shielding and Sensing Characteristics of Flexible Carbon/Melamine Composite Foams
SU Bingyao1,2, WANG Bin1,2,*, HOU Linwei1,2, WANG Heng1,2, ZHAO Jianwei1,2, HE Xinhai1,2,*, YUAN Yarong1
1 School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
2 Xi'an Key Laboratory of Textile Composites, Xi'an 710048, China
下载:  全 文 ( PDF ) ( 11807KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 智能可穿戴设备不断发展,对柔性传感与电磁屏蔽提出了更高的要求。以三聚氰胺泡沫为基底,通过一种低成本、短周期的浸渍-化学镀镍工艺,将纳米碳质颗粒等物质包覆于三聚氰胺泡沫骨架,制备了兼具电磁屏蔽与柔性传感的复合泡沫材料。采用扫描电子显微镜(SEM)、万能试验机、电化学工作站和矢量网络分析仪研究了碳/三聚氰胺复合泡沫的微观结构、循环压缩、应力传感特性及电磁屏蔽效能。结果表明,碳/三聚氰胺复合泡沫呈三维开孔网状结构,压缩韧性良好;镀镍后,复合泡沫的最大应力为2.75 MPa,循环压缩前两圈吸收能量为22.17 MJ·cm-3。碳/三聚氰胺复合泡沫呈压阻式传感特性,在低应力区传感准确性良好,测试范围较宽,灵敏度为(0.62±0.06) kPa-1;镀镍后,响应电流增大,复合泡沫在高应力区传感准确性良好,灵敏度为(3.38±1.0) kPa-1。碳/三聚氰胺复合泡沫的电磁屏蔽以吸收屏蔽效能为主。镀镍前,电磁屏蔽效能与密度呈正相关,当密度为0.168 g·cm-3时,复合泡沫的比电磁屏蔽值最优,为182.86 dB·cm3·g-1;镀镍后,复合泡沫的绝对电磁屏蔽值最佳,为178.61 dB·cm2·g-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏秉尧
王斌
侯林伟
王恒
赵建伟
贺辛亥
袁亚蓉
关键词:  柔性  复合泡沫  循环压缩  应力传感  电磁屏蔽    
Abstract: With the development of smart wearable devices, flexible sensing and electromagnetic shielding were put forward higher requirement. Melamine foams were used as substrate, and their skeleton were then coated with carbon nanoparticles. Carbon/melamine composite foams with flexible sensing and electromagnetic shielding, were then prepared by such low-cost, short cycle process of infiltration and electroless nickel plating. Microstructure, cyclic compression, stress sensing and electromagnetic shielding properties of composite foams, were investigated by SEM, universal testing machine, electrochemical workstation and vector network analyzer, respectively. Results showed that carbon/melamine composite foams had tiny open cells and three-dimensional reticular structure, exhibited good compressive toughness. Its maximum stress is 2.75 MPa, and absorbed energy of cyclic compression is 22.17 MJ·cm-3 during first two cycles after electroless nickel plating. Carbon/melamine composite foams presented piezoresistive sensing characteristics, with sensitivity of (0.62±0.06) kPa-1 under different external load in low stress range. They also showed good sensing accuracy, and wide testing range. While after electroless nickel plating, composite foams exhibited good sensing accuracy in high stress range, with increasing response current, and showed sensitivity of (3.38±1.0) kPa-1. Electromagnetic shielding was dominated by absorption shielding effectiveness for composite foams. It showed positive correlation with densities before electroless nickel plating. Specific electromagnetic shielding value of composite foams reached maximum (182.86 dB·cm3·g-1) at the density of 0.168 g·cm-3. The optimal value of SSET was 178.61 dB·cm2·g-1 after electroless nickel plating.
Key words:  flexible    composite foam    cyclic compression    stress sensing    electromagnetic shielding
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TB332  
基金资助: 陕西省教育厅重点科学研究计划协同创新中心项目(20JY027);陕西省科技厅重点研发计划项目(2020NY-154);陕西省留学人员科技活动择优资助项目(2021014)
通讯作者:  *王斌,西安工程大学材料工程学院副教授、硕士研究生导师,材料工程学院第二届教授委员会委员。于2004年和2007年毕业于西安理工大学材料科学与工程学院,分别获学士学位和工学硕士学位;2014年毕业于西北工业大学材料学院,获工学博士学位。2015年就职于西安工程大学,从事教学科研工作至今。2017年国家公派赴美国UNT访学。现主要研究领域为柔性碳泡沫复合材料、纺织结构复合材料,近年来发表SCI/ EI论文10余篇,授权专利3项。 wangbin_1120@163.com
贺辛亥,西安工程大学材料工程学院教授、博士研究生导师,陕西秦创原纺织结构复合材料“科学家+工程师”队伍首席科学家。1994年毕业于西北工业大学,获学士学位,后就职于西安工程大学,从事教学科研工作至今,历任讲师、副教授和教授;于2007年获西安工程大学工学硕士学位,2012年获西北工业大学机电学院工学博士学位。现主要研究领域为纺织结构复合材料、遗态功能复合材料等,近年来发表学术论文80余篇,授权专利20余项。 hexinhai@xpu.edu.cn   
作者简介:  苏秉尧,2019年毕业于杭州电子科技大学信息工程学院,获学士学位。现为西安工程大学材料工程学院硕士研究生,在王斌副教授的指导下进行研究。目前主要研究领域为柔性碳基复合材料。
引用本文:    
苏秉尧, 王斌, 侯林伟, 王恒, 赵建伟, 贺辛亥, 袁亚蓉. 柔性碳/三聚氰胺复合泡沫的电磁屏蔽与传感特性[J]. 材料导报, 2024, 38(5): 22070159-7.
SU Bingyao, WANG Bin, HOU Linwei, WANG Heng, ZHAO Jianwei, HE Xinhai, YUAN Yarong. Electromagnetic Shielding and Sensing Characteristics of Flexible Carbon/Melamine Composite Foams. Materials Reports, 2024, 38(5): 22070159-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070159  或          http://www.mater-rep.com/CN/Y2024/V38/I5/22070159
1 Tian Y Z. Environmental Science and Management, 2021, 46(11), 137 (in Chinese).
田义宗. 环境科学与管理, 2021, 46(11), 137.
2 Li J, Liu L L, Shen Z Y, et al. Journal of Functional Materials, 2021, 52(11), 11001(in Chinese).
李均, 刘璐璐, 沈振宇, 等. 功能材料, 2021, 52(11), 11001.
3 Zhang K, Wu L F, Gui T J, et al. Materials Reports, 2021, 35(S2), 513 (in Chinese).
张凯, 吴连锋, 桂泰江, 等. 材料导报, 2021, 35(S2), 513.
4 Zhang T Y, Song B Q, Li X F, et al. Journal of Functional Materials, 2023, 54(9), 9080(in Chinese).
张天一, 宋柏青, 李欣峰, 等. 功能材料, 2023, 54(9), 9080.
5 Li Z J, Liu S Y, Wang G Y, et al. Chinese Journal of Synthetic Chemistry, 2019, 27(2), 149 (in Chinese).
李子健, 刘绍英, 王公应, 等. 合成化学, 2019, 27(2), 149.
6 Jing R X. Study on the preparation and electrochemical performance of flexible carbon foam and its composites. Master's Thesis, Xi'an University of Technology, China, 2021 (in Chinese).
井蕊璇. 柔性泡沫炭及其复合材料的制备与电化学性能研究. 硕士学位论文, 西安理工大学, 2021.
7 Wang W K. Preparation of melamine-based carbon foam and its electromagnetic shielding properties. Master's Thesis, University of Science and Technology Liaoning, China, 2021 (in Chinese).
王玮开. 三聚氰胺基炭泡沫的制备及电磁屏蔽性能研究. 硕士学位论文, 辽宁科技大学, 2021.
8 Qu Z C. Study on the synthesis and properties of the electrode materials based on carbonized melamine foam and its composite. Master's Thesis, Jiangsu University of Science and Technology, China, 2018 (in Chinese).
屈志超. 三聚氰胺碳泡沫及其复合材料的制备与电化学性能的研究. 硕士学位论文, 江苏科技大学, 2018.
9 Feng Y, Cao M, Yang L, et al. Journal of Electroanalytical Chemistry, 2018, 823, 633.
10 Sun Y M, Yi R H, Duan J Q, et al. Materials Reports, 2021, 35(16), 16001(in Chinese).
孙义民, 易荣华, 段纪青, 等. 材料导报, 2021, 35(16), 16001.
11 Li J, Bao J J. Polymer Materials Science & Engineering, 2020, 36(7), 163 (in Chinese).
李洁, 包建军. 高分子材料科学与工程, 2020, 36(7), 163.
12 Fang X, Tan J, Gao Y L, et al. Nanoscale, 2017, 9(45), 17948.
13 Wang B, Luo X Y, Wang C, et al. Materials Reports, 2020, 34(18), 18159 (in Chinese).
王斌, 罗晓宇, 王琛, 等. 材料导报, 2020, 34(18), 18159.
14 Nyström G, Marais A, Karabulut E, et al. Nature Communications, 2015, 6(1), 1.
15 Liu X, Zou S, Liu K, et al. Journal of Power Sources, 2018, 384, 214.
16 Tian M. Preparation and properties of highly elastic conductive carbon sponge. Master's Thesis, Xi'an University of Technology, China, 2021 (in Chinese).
田梦. 高弹性导电碳海绵的制备及性能研究. 硕士学位论文, 西安理工大学, 2021.
17 Wang L J, Zhang Y, Wang Z W. Journal of Vibration and Shock, 2015, 34(5), 44 (in Chinese).
王立军, 张岩, 王志伟. 振动与冲击, 2015, 34(5), 44.
18 Wang B. Preparation and properties of carbon foam and C/C-carbon foam combinational materials. Ph. D. Thesis, Northwestern Polytechnical University, China, 2014 (in Chinese).
王斌. 炭泡沫及C/C-炭泡沫组合材料的制备与性能研究. 博士学位论文, 西北工业大学, 2014.
19 Stejskal J, Pekárek M, Trchová M, et al. Journal of Applied Polymer Science, 2022, 139(20), 52156.
20 Yap L W, Shi Q Q, Gong S, et al. Inorganic Chemistry Communications, 2019, 104, 98.
21 Liu W, Liu N, Yue Y, et al. Journal of Materials Chemistry C, 2018, 6(6), 1451.
22 Ding Y, Yang J, Tolle C R, et al. ACS Applied Materials & Interfaces, 2018, 10(18), 16077.
23 Lu Q Y. The electrochemiluminescence sensor for detecting phenolic compounds, dopamine and melamine based on new luminophores materials. Master's Thesis, Southwest University, China, 2016 (in Chinese).
卢齐依. 基于新型电致化学发光材料构建酚类、多巴胺和三聚氰胺传感器的研究. 硕士学位论文, 西南大学, 2016.
24 Fragkogiannis C, Koutsioukis A, Georgakilas V. Molecules, 2022, 27(11), 3530.
25 Xi J B. Carbon-based materials for high performance electromagnetic interference shielding and microwave absorption. Ph. D. Thesis, Zhejiang University, China, 2018 (in Chinese).
席嘉彬. 高性能碳基电磁屏蔽及吸波材料的研究. 博士学位论文, 浙江大学, 2018.
26 Lee T W, Lee S E, Jeong Y G. ACS Applied Materials & Interfaces, 2016, 8(20), 13123.
27 Xing D, Lu L, Tang W, et al. Materials Letters, 2017, 207, 165.
28 Chen Y, Wang Y, Zhang H B, et al. Carbon, 2015, 82, 67.
29 Shahzad F, Alhabeb M, Hatter C B, et al. Science, 2016, 353(6304), 1137.
30 Saini P, Choudhary V, Singh B P, et al. Materials Chemistry and Phy-sics, 2009, 113(2-3), 919.
[1] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[2] 白忠薛, 王学川, 李佳俊, 冯宇宇, 白波涛, 黄梦晨, 岳欧阳, 刘新华. 生物质基导电水凝胶的研究进展[J]. 材料导报, 2024, 38(4): 22090215-14.
[3] 刘玉慧, 柳仕林, 吴聪影, 吴琪琳. 基于碳材料的多维度柔性应变/压力传感器的研究进展[J]. 材料导报, 2024, 38(4): 22070258-9.
[4] 杨平安, 刘中邦, 李锐, 屈正微, 黄鑫, 寿梦杰, 杨健健, 熊雨婷. 电阻式柔性触觉传感器的研究进展[J]. 材料导报, 2023, 37(9): 21060169-14.
[5] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[6] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[7] 黄兵, 刘萍. 金属网格柔性透明导电薄膜研究进展[J]. 材料导报, 2023, 37(5): 21030214-12.
[8] 薛云嘉, 刘家臣. 柔性纤维毡的制备及弹性与隔热性能研究[J]. 材料导报, 2023, 37(3): 21030042-6.
[9] 王丽丽, 唐杰, 秦陆洋, 李雪莎, 聂朝胤. 基于硅溶胶形核剂的柔性二氧化硅气凝胶的研究[J]. 材料导报, 2023, 37(24): 22080230-6.
[10] 付宁宁, 谢绍兴, 周禄军, 丁亚萍, 孟凡彬. 电纺碳纳米纤维/石墨烯气凝胶薄膜的可控制备与电磁屏蔽性能研究[J]. 材料导报, 2023, 37(24): 22090180-5.
[11] 赵浩成, 刘翠荣, 姚志广, 张莹, 张志超, 刘茜秀. 应用于静电键合的透光聚氨酯弹性体阴极材料的研究[J]. 材料导报, 2023, 37(22): 22060160-6.
[12] 王娅鸽, 王彬彬, 杨德威, 李瑶. 氮掺杂柔性块体多孔碳的制备及对CO2/CH4的吸附分离研究[J]. 材料导报, 2023, 37(22): 22050326-9.
[13] 门海蛟, 宋健尧, 黄秉经, 李建昌. 柔性可穿戴电子应变传感器的研究进展[J]. 材料导报, 2023, 37(21): 22030317-23.
[14] 张斌, 徐桂英. 可穿戴热电发电器的研究进展[J]. 材料导报, 2023, 37(2): 20120005-18.
[15] 田玉玉, 何韧, 吴菊英, 钟卫洲, 张凯. 电容式柔性压力传感器的性能优化原理及研究进展[J]. 材料导报, 2023, 37(16): 21110277-14.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed