Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23070218-5    https://doi.org/10.11896/cldb.23070218
  金属与金属基复合材料 |
可实现逻辑运算的柔性电路
曾杨武1,2, 庄俊城1,2, 杨楠1,2,*
1 汕头大学工学院,广东 汕头 515063
2 汕头大学智能制造教育部重点实验室,广东 汕头 515063
Flexible Circuits for Logic Operations
ZENG Yangwu1,2, ZHUANG Juncheng1,2, YANG Nan1,2,*
1 Engineering College, Shantou University, Shantou 515063, Guangdong, China
2 Key Laboratory of Intelligent Manufacturing of Ministry of Education, Shantou University, Shantou 515063, Guangdong, China
下载:  全 文 ( PDF ) ( 3386KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 柔性电路能解决传统金属导体受到机械应力时易失效的问题,并使柔性机器人的变形与运动不再受到传统金属导体的束缚。本工作把材料结构设计与电路设计相结合,利用柔性材料在力的作用下产生的弹性形变形成不同信息通道的机理,设计出一种新型柔性电路。该电路是柔性材料和导电材料所构成的复合物,初始状态下,该复合物内部内没有任何信息通路,可通过手动方式使其变形并搭接成相应的信息通路,形成“与”“或”“异或”等多种逻辑门。该逻辑门的输入为力,输出用LED灯的“亮、灭”状态来显示。有限元仿真和实验表明,该柔性电路能够稳健地实现既定的逻辑功能。在未来,可将这种柔性电路嵌入机器人、传感器或驱动器中,有望使得这些装置产生与环境相适应的决策智能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾杨武
庄俊城
杨楠
关键词:  柔性材料  逻辑门  电路  柔性机器人    
Abstract: The flexible circuits can solve the problem that traditional metal conductors are easy to fail when subjected to mechanical stress, which makes the deformation and movement of the flexible robot no longer constrained by the traditional metal conductor. In this work, a new type of flexible circuit is designed by combining material structure design with circuit design, using the mechanism that flexible materials form different information channels under the action of force. The circuit is a complex mixture of flexibe materials and conductive materials. In the initial state, there is no information path inside the mixture, which can be deformed and bonded into the corresponding information path by manual means to form a variety of logic gates such as ‘AND’‘OR’‘XOR’ and so on. The input of the logic gate is force, and the output is displayed with the ‘on and off’ state of an LED light. Finite element simulations and experiments show that flexible circuits can realize the desired logic function robustly. In the future, such flexible circuits could be embedded in robots, sensors or drivers, which is expected to enable these devices to generate decision-making intelligence that is adapted to the environment.
Key words:  flexibe material    logic gate    circuit    flexibe robot
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  TH122  
基金资助: 国家自然科学基金(11872046);广东省教育厅重点专项(2021ZDZX2007);广东省基础与应用基础研究基金(2021A1515010318;2022A1515011024);汕头大学科研启动项目(NTF19012)
通讯作者:  * 杨楠,汕头大学工学院机电系教授、博士、博士研究生导师。2002年天津工业大学机械设计专业本科毕业,2008年天津工业大学机械设计专业博士毕业,2019年进入汕头大学工作至今。目前主要从事多孔结构、机械超材料“结构-性能”等方面的研究工作。发表论文40余篇。 nyang@stu.edu.cn   
作者简介:  曾杨武,2021年6月于湖南工学院获得工学学士学位。现为汕头大学工学院硕士研究生,在杨楠教授的指导下进行研究。目前主要研究领域为机械超材料结构设计。
引用本文:    
曾杨武, 庄俊城, 杨楠. 可实现逻辑运算的柔性电路[J]. 材料导报, 2024, 38(24): 23070218-5.
ZENG Yangwu, ZHUANG Juncheng, YANG Nan. Flexible Circuits for Logic Operations. Materials Reports, 2024, 38(24): 23070218-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070218  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23070218
1 Zhou Ji. Merging of metamaterials and conventional, Science Press, China, 2016. (in Chinese).
周济. 超材料与常规材料的融合, 科学出版社, 2016.
2 Yu X, Zhou J, Liang H, et al. Progress in Materials Science, 2018, 94, 114.
3 Kuindersma S, Deits R, Fallon M, et al. Autonomous Robots, 2016, 40(3), 429.
4 Nelson G, Saunders A. Humanoid robotics: a reference, Springer, 2018, pp.1.
5 Ren L, Li B, Wei G, et al. iScience, 2021, 24(9), 103075.
6 Stephen C, Carmel M, Philip L D, et al. Extreme Mechanics Letters, 2018, 22, 51.
7 Kim S, Laschi C, Trimmer B. Trends in Biotechnology, 2013, 31(5), 287.
8 Martinez R V, Branch J L, Fish C R, et al. Advanced Materials, 2013, 25(2), 205.
9 Pfeifer R, Lungarella M, Iida F. Communications of the ACM, 2012, 55(11), 76.
10 Whitesides G M. Angewandte Chemie International Edition, 2018, 57(16), 4258.
11 Park S, Vosguerichian M, Bap Z. Nanoscale, 2013, 5(5), 1727.
12 Lipomi D J, Bao Z. Energy & Environmental Science, 2011, 4(9), 3314.
13 Sekitani T, Someya T. Advanced Materials, 2010, 22(20), 2228.
14 Benight S J, Wang C, Tok J B H, et al. Progress in Polymer Science, 2013, 38(12), 1961.
15 Xiang Y, Li T, Suo Z, et al. Applied Physics Letters, 2005, 87(16), 161910.
16 Li T, Suo Z. International Journal of Solids and Structures, 2006, 43(7-8). 2351.
17 Harris K D, Elias A L, Chung H J. Journal of Materials Science, 2016, 51(6). 2771.
18 Rogers J A, Someya T, Huang Y. Science, 2010, 327(5973), 1603.
19 Zhu J, Dexheimer M, Cheng H. npj Flexible Electronics, 2017, 1(1), 1.
20 Nassar J M, Rojas J P, Hussain A M, et al. Extreme Mechanics Letters, 2016, 9, 245.
21 Huang S, Liu Y, Zhao Y, et al. Advanced Functional Materials, 2019, 29(6), 1805924.
22 Zhang Y, Yan Z, Nan K, et al. Proceedings of the National Academy of Sciences, 2015, 112(38), 11757.
23 Rogers J, Huang Y, Schmidt O G, et al. Mrs Bulletin, 2016, 41(2), 123.
24 Xu B, Chen D, Hayward R C. Advanced Materials, 2014, 26(25). 4381.
25 Nick Z H, Tabor C E, Harne R L. Extreme Mechanics Letters, 2020, 40, 100871.
26 Heo H, Li S, Bao H, et al. Advanced Engineering Materials, 2019, 21(6), 1900225.
27 El Helou C, Buskohl P R, Tabor C E, et al. Nature Communications, 2021, 12(1), 1.
28 Mei T, Meng Z, Zhao K, et al. Nature Communications, 2021, 12(1), 1.
[1] 易聪, 王佳仪, 袁伟, 张东煜, 苏文明, 崔铮, 孙立涛. 基于褶皱结构可拉伸织物电极的制备与应用[J]. 材料导报, 2022, 36(Z1): 21110214-6.
[2] 庄煜, 郭艳玲, 李健, 姜凯译, 于跃强, 张慧. 仿血管聚氨酯基复合材料的激光烧结工艺研究[J]. 材料导报, 2020, 34(10): 10177-10181.
[3] 崔铮. 柔性混合电子——基于印刷加工实现柔性电子制造[J]. 材料导报, 2020, 34(1): 1009-1013.
[4] 杨丹,刘妍,钟正祥,田宫伟,樊文倩,王宇,齐殿鹏. 植入式神经微电极[J]. 材料导报, 2020, 34(1): 1107-1113.
[5] 胡德超,贾志欣,钟邦超,董焕焕,丁勇,罗远芳,贾德民. 废印刷电路板非金属粉负载二氧化硅杂化填料的制备及其在不饱和聚酯中的应用[J]. 《材料导报》期刊社, 2018, 32(2): 278-281.
[6] 王燕锋,赵晓华,李庚英. 干湿变化对多壁碳纳米管/水泥砂浆压阻效应的影响[J]. 《材料导报》期刊社, 2017, 31(24): 20-25.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed