Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23050176-5    https://doi.org/10.11896/cldb.23050176
  高分子与聚合物基复合材料 |
PDMS包封CPCM制备三明治结构织物及热性能分析
张维1,2,*, 张义博1, 张琪1, 姚继明1,2, 郝尚1
1 河北科技大学纺织服装学院,石家庄 050018
2 河北省纺织服装技术创新中心,石家庄 050018
Fabrication of Sandwich Structured Fabric with PDMS Encapsulated CPCM and Its Thermal Performance Analysis
ZHANG Wei1,2,*, ZHANG Yibo1, ZHANG Qi1, YAO Jiming1,2, HAO Shang1
1 College of Textile and Garment, Hebei University of Science and Technology, Shijiazhuang 050018, China
2 Hebei Technology Innovation Center for Textile and Garment, Shijiazhuang 050018, China
下载:  全 文 ( PDF ) ( 17144KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为解决正十八烷在使用过程中的相泄露问题,以细菌纤维素膜为支撑载体、聚二甲基硅氧烷为包封材料,通过真空浸渍和热固处理制备形稳性复合相变材料。正十八烷浸渍率高达84.9%,潜热能为212.70 J/g,可经受100次热循环测试。经180°弯折后回弹角为156.4°,回弹角相较于包封前提高了131.7%。以复合相变材料为中间层、涤棉混纺织物为外层,经由聚二甲基硅氧烷粘合和固化处理,制得三明治结构织物。吸热饱和后,三明治织物表面温度比普通织物延时降温310 s,在日照模型和人体热管理测试中其覆盖的空间内部温度比普通织物覆盖处降低0.9 ℃,显示出优异的储热和隔热性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张维
张义博
张琪
姚继明
郝尚
关键词:  细菌纤维素膜  正十八烷  柔性复合相变材料  三明治结构织物  高潜热    
Abstract: In order to solve the problem of phase leakage in the use of octadecane, the composite phase change material (CPCM) with shape stability was prepared by vacuum impregnation and thermosetting treatment with bacterial cellulose membrane as support carrier and polydimethylsiloxane (PDMS) as encapsulation material. The impregnation rate of octadecane was as high as 84.9% with the latent heat energy of 212.70 J/g, and it could withstand 100 thermal cycle tests. After 180 bending, the recovery angle was 156.4°, which was 131.7% higher than that before encapsulation. Sandwich structured fabric (ss-F) was produced with CPCM as the inner layer and polyester-cotton blended fabric as the outer layer through PDMS bonding and curing process. After the saturation of heat absorption, the surface temperature of ss-F was 310 s cooler than that of ordinary fabric with delay. In the sunshine model and human thermal management test, the internal temperature of the space covered by it is 0.9 ℃ lower than that covered by ordinary fabric, which showed excellent thermal storage and insulation performance.
Key words:  bacterial cellulose membrane    octadecane    flexible composite phase change material    sandwich structured fabric    high latent heat
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TB34  
  TS195.597  
基金资助: 河北省自然科学基金(B2022208014);河北省省属高校基本科研业务费专项资金(2021YWF17)
通讯作者:  *张维,通信作者,2014年10月于天津工业大学获得工学博士学位。现任河北科技大学纺织服装学院副教授、硕士研究生导师。目前主要研究领域为印染废水电化学高效处理技术与资源回用、医疗防护与卫生健康用纺织品的开发、纺织品绿色前处理及染色加工技术等。weizhang2999@163.com   
引用本文:    
张维, 张义博, 张琪, 姚继明, 郝尚. PDMS包封CPCM制备三明治结构织物及热性能分析[J]. 材料导报, 2024, 38(19): 23050176-5.
ZHANG Wei, ZHANG Yibo, ZHANG Qi, YAO Jiming, HAO Shang. Fabrication of Sandwich Structured Fabric with PDMS Encapsulated CPCM and Its Thermal Performance Analysis. Materials Reports, 2024, 38(19): 23050176-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050176  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23050176
1 Zhang W, Hao S, Weng J L, et al. Textile Research Journal, 2020, 91(11-12), 1239.
2 Dincer I, Rosen M A. Thermal energy storage: systems and applications, University of Ontario Institute of Technology Ontario, Canada, 2021.
3 Qi X D, Shao Y W, Wu H Y, et al. Composites Science and Technology, 2019, 181, 107714.
4 Liu W, Li Z M, Liu M Y, et al. Energy storage science and technology, 2023, 12(2), 398.
5 Huang X, Alva G, Jia Y, et al. Renewable and Sustainable Energy Reviews, 2017, 72, 128.
6 Tahan Latibari S, Sadrameli S M. Solar Energy, 2018, 170, 1130.
7 Zhang W, Hao S, Zhao D, et al. Pigment & Resin Technology, 2020, 49(6), 491.
8 Magendran S S, Khan F S A, Mubarak N M, et al. Nano-Structures & Nano-Objects, 2019, 19, 100361.
9 Lin Y, Alva G, Fang G. Energy, 2018, 165, 685.
10 Aftab W, Huang X, Wu W, et al. Energy & Environmental Science, 2018, 11(6), 1392.
11 Huang X B, Chen X, Li A, et al. Chemical Engineering Journal, 2019, 356, 641.
12 Gao H Y, Wang J J, Chen X, et al. Nano Energy, 2018, 53, 769.
13 Jie Y, Tang L S, Bao R Y, et al. Materials Horizons, 2019, 6, 2051.
14 Sarier N, Onder E. Thermochimica Acta, 2012, 540, 7.
15 Li W Q, Qu Z G, He Y L, et al. Journal of Power Sources, 2014, 255, 3904.
16 Zhang H Y, Wang L L, XI S B, et al. Renewable Energy, 2021, 175, 307.
17 Zheng X D, Sun W, Wei N, et al. Materials Chemistry and Physics, 2021, 274, 125162.
18 Wang F P, Zhao X J, Wahid F, et al. Carbohydrate Polymers, 2021, 253, 117220.
19 Reiniati I, Hrymak A N, Margaritis A. Critical Reviews in Biotechnology, 2017, 37(4), 510.
20 Wang B, Li X G, Luo B, et al. Small, 2013, 9(14), 2399.
21 Dieter, Klemm, Friederike, et al. Angewandte Chemie International Edition, 2010, 42(38), 1.
22 Gonzales R R, Kato N, Awaji H, et al. Separation and Purification Technology, 2022, 285, 120369.
23 Hou Y, Duan C, Zhu G, et al. Journal of Membrane Science, 2019, 591, 117312.
[1] 邢欢欢, 胡萍, 罗政, 毛丽秋, 盛丽萍, 王珊珊. 低对称性二维层状过渡金属硫族化合物合金及异质结的化学气相沉积法制备研究进展[J]. 材料导报, 2024, 38(24): 23100004-13.
[2] 陈菊, 周涵. 基于近零介电常数材料的热辐射调控研究进展[J]. 材料导报, 2024, 38(22): 23100001-7.
[3] 蔡轩皓, 娄兴, 覃继宁, 周涵. 电致变色材料微纳结构设计及多波段调控应用研究进展[J]. 材料导报, 2024, 38(21): 23100087-7.
[4] 徐杨, 刘成宝, 郑磊之, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. 高结晶度g-C3N4在光催化领域的研究进展[J]. 材料导报, 2024, 38(21): 23060180-13.
[5] 闫帅, 吕平, 黄微波, 张锐, 王旭, 王文斌, 鞠家辉. 喷涂聚脲及其纤维复合材料的抗侵彻性及防护机理研究新进展[J]. 材料导报, 2024, 38(19): 23040240-6.
[6] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[7] 周丹, 刘一鸣, 王志刚, 银建中, 徐琴琴. 液相剥离自组装法制备AgNPs/MoS2复合SERS基底及其性能[J]. 材料导报, 2024, 38(16): 24040049-7.
[8] 刘洪亮, 郭志迎, 袁晓峰, 朱尊伟, 高倩倩, 张忻. 熔体旋甩工艺对Mg2(Si0.4Sn0.6)Sb0.015固溶体微结构和热电性能的影响研究[J]. 材料导报, 2024, 38(12): 22090010-5.
[9] 王梓霄, 熊良涛, 李浩源. 共价有机框架材料的热导和热电应用研究进展[J]. 材料导报, 2024, 38(12): 24040129-8.
[10] 王石, 陈昱恺, 周新甲, 呼博渊, 王勇, 李瑜, 井新利. 导电高分子水凝胶及其应变传感性能研究进展[J]. 材料导报, 2024, 38(11): 22120184-11.
[11] 何敬敬, 王旭, 牛强. 钙钛矿量子点在光伏电池中的应用进展[J]. 材料导报, 2024, 38(10): 22110228-13.
[12] 艾恒雨, 梁洪博, 刘乾亮, 廉新宇, 刘彩虹. 超疏水蒸馏膜的功能改性研究进展[J]. 材料导报, 2024, 38(10): 22080205-9.
[13] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[14] 史一涵, 贺建林, 丁晟, 杨焜, 侯可心, 李钒. 碳材料用于创伤止血的研究进展[J]. 材料导报, 2024, 38(9): 22090162-13.
[15] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed