Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 22110228-13    https://doi.org/10.11896/cldb.22110228
  无机非金属及其复合材料 |
钙钛矿量子点在光伏电池中的应用进展
何敬敬, 王旭, 牛强*
内蒙古鄂尔多斯电力冶金集团股份有限公司国家企业技术中心,内蒙古 鄂尔多斯 016064
A Comprehensive Review of Perovskite Quantum Dots for Photovoltaics Application
HE Jingjing, WANG Xu, NIU Qiang*
Erdos Electric Power and Metallurgy Group Company Limited National Enterprise Technology Center, Ordos 016064, Inner Mongolia, China
下载:  全 文 ( PDF ) ( 24436KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,钙钛矿量子点以其带隙可调、性能稳定、可溶液加工等独特优势被广泛应用于光伏能源领域,并逐渐显示出广阔的应用前景。本文基于钙钛矿量子点在太阳能电池领域的应用,重点归纳了其分别作为光吸收材料、钝化材料、界面缓冲材料等方面的进展;同时探讨了目前钙钛矿量子点在能源领域商业化应用中面临的稳定性、铅毒性、成膜工艺等挑战和已报道的解决方案;最后,总结和展望了具有更高光电性能和稳定性的钙钛矿量子点的发展方向,旨在通过对其在光伏电池应用的系统梳理,推动量子点商业化应用进程。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何敬敬
王旭
牛强
关键词:  钙钛矿  量子点  太阳能电池  钝化  稳定性    
Abstract: Perovskite quantum dots (PQDs) have emerged as one of the promising candidates for its adjustable bandgap, stable performance, and low-cost solution synthetic process in photovoltaic cells. In this review, we focus on the multifunctional applications of PQDs in the solar cells, including absorption materials, passivation materials, and interface buffer materials. The latest development and the current bottlenecks such as stability, lead toxicity, and film-forming process of PQDs have been discussed. In addition, various optimization methods are also presented about the performance improvement of PQDs. In the end, a summary and perspectives are presented to promote the future commercialization application of PQDs with higher performance and stability.
Key words:  perovskite    quantum dot    solar cell    passivation    stability
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  TB34  
基金资助: 内蒙古自治区科技重大项目(2021ZD0042)
通讯作者:  *牛强,博士,高级工程师,鄂尔多斯电力冶金集团的技术创新中心总负责人。2010年在浙江大学硕士毕业后得到著名的欧盟玛丽居里项目的嘉奖去德国进修;2013年获得了德国波鸿鲁尔大学授予的博士学位;2014年在德国亚琛工业大学完成了博士后工作。目前主要从事材料学、化学化工、冶金工程等方面的研究工作,并主持了内蒙古自治区科技重大专项(2021ZD0042)、“科技兴蒙”重大项目、内蒙自治区科技计划项目(2020GG0279)等多个重大项目。在Chemical Engineering Journal、ACS Catalysis、 Chemistry of Materials、Greenhouse Gases: Science and Technology、Catalysis Communications等国际著名的学术期刊上发表了10余篇论文,获得授权专利48项。niuqiang@chinaerdos.com   
作者简介:  何敬敬,博士,高级工程师,2021年06月毕业于华东理工大学材料科学与工程学院。目前就职于内蒙古鄂尔多斯电力冶金集团旗下科技创新研究院上海研究中心,担任高级研究员一职,为中国材料研究学会会员、中国光伏标准协会钙钛矿标准专题组成员。主要研究领域为多晶硅、太阳能电池、功能材料制备等新能源领域。目前以第一作者在Nature Communication、ChemSusChem、ACS Applied Energy Materials、Journal of Energy Chemistry、Cryst-EngComm等Top期刊上发表多篇论文,已获得授权国家专利7项。
引用本文:    
何敬敬, 王旭, 牛强. 钙钛矿量子点在光伏电池中的应用进展[J]. 材料导报, 2024, 38(10): 22110228-13.
HE Jingjing, WANG Xu, NIU Qiang. A Comprehensive Review of Perovskite Quantum Dots for Photovoltaics Application. Materials Reports, 2024, 38(10): 22110228-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110228  或          http://www.mater-rep.com/CN/Y2024/V38/I10/22110228
1 Chen C, Chen Hua Y, Huang W, et al. Nature, 2022, 612, 266.
2 Nazir G, Lee S, Lee J, et al. Advanced Materials, 2022, 34(50), 2204380.
3 Chi W, Banerjee S K. Angewandte Chemie, 2022, 61(9), e202112412.
4 Park A, Goudarzi A, Yaghmaie P, et al. Nature Nanotechnology, 2022, 17, 802.
5 Jia D, Chen J, Zhuang R, et al. Energy and Environmental Science, 2022, 15, 4201.
6 Zhao Q, Han R, Marshall A R, et al. Advanced Materials, 2022, 34(17), 2107888.
7 Chen J, Jia D, Johansson E M J, et al. Energy and Environmental Science, 2021, 14, 224.
8 Xu L, Yuan S, Ma L, et al. Journal of Materials Chemistry A, 2021, 9, 18947.
9 Hu L, Zhao Q, Huang S, et al. Nature Communications, 2021, 12, 466.
10 Gutierrez G D, Coropceauu I, Bawendi M G, et al. Advanced Materials, 2016, 28(3), 497.
11 Debije M G, Verbunt P P C. Advanced Energy Materials, 2012, 2(1), 12.
12 Meinardi F, Bruni F, Brovelli S. Nature Reviews Materials, 2017, 2, 17072.
13 Swarnkar A, Marshall A R, Sanehira E M, et al. Science, 2016, 354(6308), 92.
14 Sanehira E M, Marshall A R, Christians J A, et al. Science Advances, 2017, 3(10), eaao4204.
15 Jia D, Chen J, Qiu J, et al. Joule, 2022, 6(7), 1632.
16 Zhang X, Huang H, Ling X, et al. Advanced Materials, 2022, 34(2), 2105977.
17 Lim S, Han S, Kim D, et al. Advanced Materials, 2023, 35(4), 2203430.
18 Li F, Zhou S, Yuan J, et al. ACS Energy Letters, 2019, 4(11), 2571.
19 Hao M, Bai Y, Zeiske S, et al. Nature Energy, 2020, 5, 79.
20 He J, Liu J, Hou Y, et al. Nature Communications, 2020, 11, 4237.
21 Jia D, Chen J, Mei X, et al. Energy and Environmental Science, 2021, 14, 4599.
22 Zhuang X, Sun R, Zhou D, et al. Advanced Functional Materials, 2022, 32(18), 2110346.
23 Zhang S, Guo R, Zeng H, et al. Energy and Environmental Science, 2022, 15, 244.
24 Zhang J, Jin Z, Liang L, et al. Advanced Science, 2018, 5(12), 1801123.
25 Que M, Dai Z, Yang H, et al. ACS Energy Letters, 2019, 4(8), 1970.
26 Liu S, Lyu J, Zhou D, et al. Advanced Functional Materials, 2022, 32(19), 2112647.
27 Wang Q, Jin Z, Chen D, et al. Advanced Energy Materials, 2018, 8(22), 1800007.
28 Jin J, Li H, Bi W, et al. Solar Energy, 2020, 198, 187.
29 Cha M, DA P, Wang J, et al. Journal of the American Chemical Society, 2016, 138(27), 8581.
30 Wang H, Song Y, Dang S, et al. Solar RRL, 2020, 4(3), 1900468.
31 Wang S, Bi C, Portniagin A, et al. ACS Energy Letters, 2020, 5(7), 2401.
32 Lyu B, Guo X, Gao D, et al. Chemical Industry and Engineering Progress, 2021, 40(1), 247 (in Chinese).
吕斌, 郭旭, 高党鸽, 等. 化工进展, 2013, 33(2), 55.
33 Wang P, Xie J, Xiao K, et al. ACS Applied Materials and Interfaces, 2018, 10(26), 22320.
34 Zhang J, Zhang G, Liao Y, et al. Chemical Engineering Journal, 2023, 453(P2), 139842.
35 Zhao H, Zhou Y, Benetti D, et al. Nano Energy, 2017, 37, 214.
36 Zhao H, Benetti D, Tong X, et al. Nano Energy, 2018, 50, 756.
37 Luo X, Ding T, Liu X, et al. Nano Letters, 2019, 19(1), 338.
38 Bai Y, Hao M M, Ding S S, et al. Advanced Materials, 2022, 34(4), 2105958.
39 Pan A, He B, Fan X, et al. ACS Nano, 2016, 10(8), 7943.
40 Akkerman Q A, Nguyen T P T, Boehme S C, et al. Science, 2022, 377(6613), 1406.
41 Lignos I, Stavrakis S, Nedelcu G, et al. Nano Letters, 2016, 16(3), 1869.
42 Wang E, Yu L, Lian S, et al. Materials Reports, 2019, 33(3), 777 (in Chinese).
王恩胜, 余丽萍, 廉世勋, 等. 材料导报, 2019, 33(3), 777.
43 Rao L, Tang Y, Song C, et al. Chemistry of Materials, 2019, 31(2), 365.
44 Zhang W, Liu H, Qi X, et al. Advanced Science, 2022, 9(11), 2106054.
45 Correa-Baena J, Saliba M, Buonassisi T, et al. Science, 2017, 358(6354), 739.
46 Saliba M, Matsui T, Domanski K, et al. Science, 2016, 354(6309), 206.
47 Lim S, Han S, Kim D, et al. Advanced Materials, 2022, 35(4), 2203430.
48 Green M, Ho-Baillie A, Snaith H. Nature Photonics, 2014, 8, 506.
49 Kweon K, Varley J, Ogitsu T, et al. Chemistry of Materials, 2023, 25(6), 2321.
50 Aristidou N, Eames C, Sanchez-Molina I, et al. Nature Communication, 2017, 8, 15218.
51 Fan W, Gao Q, Mei X, et al. Frontiers of Optoelectronics, 2022, 15, 39.
52 Chen J, Zhou S, Jin S, et al. Journal of Materials Chemistry C, 2016, 4(1), 11.
53 Fang Z, Shang M, Hou X, et al. Nano Energy, 2019, 61, 389.
54 Chen J, Jia D, Johansson E M J, et al. Energy and Environmental Science, 2021, 14, 224.
55 Zhang J, Jin Z, Liang L, et al. Advanced Science, 2018, 5(12), 1801123.
56 Lee H, Trinh C, So M, et al. Nanoscale, 2022, 14(9), 3425.
57 Zhang L, Kang C, Zhang G, et al. Advanced Functional Materials, 2021, 31(4), 2005930.
58 Chen K, Zhong Q, Chen W, et al. Advanced Functional Materials, 2019, 29(24), 1900991.
59 Tan Y, Zou Y, Wu L, et al. ACS Applied Materials & Interfaces, 2018, 10(4), 3784.
60 Yang D, Li X, Zhou W, et al. Advanced Materials, 2019, 31(30), 1900767.
61 Song S, Lv Y, Cao B, et al. Advanced Functional Materials, 2023, 33(21), 2300493.
62 Luo B, Naghadeh S, Allen A, et al. Advanced Functional Materials, 2017, 27(6), 1604018.
63 Shi J, Li F, Jin Y, et al. Angewandte Chemie International Edition, 2020, 59(49), 22230.
64 Akkerman Q A, D’Innocenzo V, Accornero S, et al. Journal of the American Chemical Society, 2015, 137(32), 10276.
65 Wang Y, Duan C, Zhang X, et al. Advanced Functional Materials, 2022, 32(6), 2108615.
66 Pan J, Shang Y, Yin J, et al. Journal of the American Chemical Society, 2018, 140(2), 562.
67 Song J, Li J, Xu L, et al. Advanced Materials, 2018, 30(30), 1800764.
68 Wheeler L M, Sanehira E M, Marshall A R, et al. Journal of the American Chemical Society, 2018, 140(33), 10504.
69 Wang Y, Yuan J, Zhang X, et al. Advanced Materials, 2020, 32(32), 2000449.
70 Liang C, Gu H, Xia J M, et al. Advanced Functional Materials, 2022, 32(8), 2108926.
71 Tseng Z L, Chen L C, Chao L W, et al. Advanced Materials, 2022, 34(18), 2109785.
72 Wang S, Du L, Jin Z, et al. Journal of the American Chemical Society, 2020, 142(29), 12669.
73 Hassan Y, Park J, Crawford M, et al. Nature, 2021, 591, 72.
74 Jia D, Chen J, Yu M, et al. Small, 2020, 16(24), 2001772.
75 Liu Y, Li Y, Hu X, et al. Chemical Engineering Journal, 2023, 453(2), 139904.
76 Feng S T, Wang L J, Ou J F, et al. Materials Reports, 2021, 35(1), 72 (in Chinese).
冯斯桐, 王林杰, 欧金法, 等. 材料导报, 2021, 35(1), 72.
77 Sun J Y, Rabouw F T, Yang X F, et al. Advanced Functional Materials, 2017, 27(45), 1704371.
78 Kong Z, Liao J, Dong Y, et al. ACS Energy Letters, 2018, 3(11), 2656.
79 Rambabu D, Bhattacharyya S, Singh T, et al. Inorganic Chemistry, 2020, 59(2), 1436.
80 Ye Y, Yin Y, Chen Y, et al. Small, 2023, 19(25), 2208119.
81 Liu C, Hu M, Zhou X, et al. NPG Asia Materials, 2018, 10, 552.
82 Duan J, Zhao Y, He B, et al. Small, 2018, 14(20), 1704443.
83 Cheng F, Cao F, Chen B, et al. Advanced Science, 2022, 9(26), 2201573.
84 Yang Z C, Wu D, Yan X B, et al. Materials Reports, 2021, 35(1), 12 (in Chinese).
杨志春, 吴狄, 剡晓波, 等. 材料导报, 2021, 35(1), 12.
85 Yuan J, Bi C, Wang S, et al. Advanced Functional Materials, 2019, 29(49), 1906615.
86 Dai S W, Hsu B W, Chen C Y, et al. Advanced Materials, 2018, 30(7), 1705532.
87 Liu M, Pasanen H, Ali-Löytty H, et al. Angewandte Chemie International Edition, 2020, 59(49), 22117.
88 Dave K, Fang M H, Bao Z, et al. Chemistry an Asian Journal, 2020, 15(2), 242.
89 García de Arquer F, Talapin D, Klimov V, et al. Science, 2021, 373(6555), 640.
90 Park A, Goudarzi A, Yaghmaie P, et al. Nature Nanotechnology, 2022, 17, 802.
91 Chen K, Qi K, Zhou T, et al. Nano-Micro Letters, 2021, 13, 172.
92 Hui W, Chao L, Lu H, et al. Science, 2021, 371(6536), 1359.
93 Kim D, Choi H, Jung W, et al. Energy & Environmental Science, 2023, 16, 2045.
[1] 李娇娇, 范婧, 王重. 非晶合金中剪切温升的研究进展[J]. 材料导报, 2024, 38(8): 22050070-8.
[2] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[3] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[4] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[5] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[6] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[7] 王越, 周本基, 徐能能, 乔锦丽. 可逆锌-空气电池锌阳极研究进展及挑战[J]. 材料导报, 2024, 38(6): 23040162-10.
[8] 江巍雪, 汤新宇, 宋金蔚, 徐祚, 张源. 纳米流体的制备、稳定性及热物性研究进展[J]. 材料导报, 2024, 38(4): 22060208-11.
[9] 赵晓燕, 王冬颖, 程从前, 曹铁山, 刘宝军, 姚景文, 赵杰. 利用电化学和显色检测法分级评估316L不锈钢钝化膜完整性[J]. 材料导报, 2024, 38(3): 22050337-5.
[10] 王蜀湘, 卢星宇, 邹力, 任洁, 王留留, 谢佳乐. Si光阳极稳定性提高策略研究进展[J]. 材料导报, 2024, 38(2): 21100131-9.
[11] 陈飞寰, 蔡召兵, 董颖辉, 林广沛, 张坡, 卢冰文, 古乐. 激光熔覆NbMoTaWV难熔高熵合金涂层的高温氧化行为[J]. 材料导报, 2024, 38(10): 22110117-8.
[12] 王耀武, 王彬彬. 有机电子传输材料在反式钙钛矿太阳能电池中的研究现状[J]. 材料导报, 2024, 38(10): 22100210-11.
[13] 杨强, 刘洪新, 何端鹏, 陈海峰, 陈维强, 金晶, 潘福明. 高导热沥青基碳纤维复合材料在航天器中的应用现状及展望[J]. 材料导报, 2024, 38(1): 22080244-8.
[14] 沈燕, 朱航宇, 龚泳帆, 何强. 碱对硫铝酸盐水泥-粉煤灰体系水化硬化的影响[J]. 材料导报, 2023, 37(S1): 23050143-6.
[15] 张伟, 杨旭, 陈晓通, 任军强, 卢学峰. 纳米结构金属材料制备工艺及强化稳定方式研究进展[J]. 材料导报, 2023, 37(S1): 23010123-16.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed