Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 22080111-10    https://doi.org/10.11896/cldb.22080111
  无机非金属及其复合材料 |
埋底界面修饰对钙钛矿太阳能电池的影响
杜一1, 顾邦凯2, 陈曦1, 李夏冰1, 卢豪1,*
1 苏州科技大学材料科学与工程学院,江苏 苏州 215009
2 东南大学物理学院,南京 211189
Impact of the Bottom Interface Modification on the Perovskite Solar Cells
DU Yi1, GU Bangkai2, CHEN Xi1, LI Xiabing1, LU Hao1,*
1 School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
2 School of Physics, Southeast University, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 18802KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 经过十多年的发展,钙钛矿太阳能电池(PSCs)迅速实现了能量转换效率(PCE)从3.8%提高到25.7%的突破,在新一代光伏产业中具有显著的竞争力。钙钛矿太阳能电池的蓬勃发展不仅源于钙钛矿材料具有高光吸收系数、优异的载流子迁移率和可调节的直接带隙,还源于其简便且成本低廉的制造工艺。但是钙钛矿电池内部的缺陷问题,特别是钙钛矿层与底层界面处的缺陷是限制钙钛矿电池效率与稳定性进一步提升的一个瓶颈。通过有效的界面修饰,一方面可以提高钙钛矿的效率,另一方面可以提高器件的稳定性。本文从界面工程对钙钛矿性能的影响出发,着重介绍了埋底界面的修饰工作对钙钛矿电池效率与稳定性的影响,包含电子传输层(ETL)/钙钛矿界面与空穴传输层(HTL)/钙钛矿界面这两部分,通过对这两类埋底界面的有效改性修饰,器件的效率与稳定性显著提高。通过对比分析了各种材料与实验方法对钙钛矿器件整体性能和稳定性的影响,探索了一条有效改善器件性能的路径。最后,本文还对钙钛矿太阳能电池的前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜一
顾邦凯
陈曦
李夏冰
卢豪
关键词:  钙钛矿太阳能电池  界面修饰  埋底界面  效率  稳定性  电子传输层    
Abstract: Perovskite solar cells (PSCs) have experienced significant progress over the past decade, with their power conversion efficiency (PCE) reaching up to 25.7% from an initial 3.8%. Their simple and low-cost manufacturing process, combined with their high light absorption coefficient, excellent carrier mobility, and tunable direct bandgap, has made them highly competitive in the new generation of photovoltaic devices. However, defects within the PSCs, particularly at the interface between the perovskite layer and the bottom layers, remain a bottleneck in further improving their efficiency and stability. Effective interface modification can enhance the efficiency of perovskite and improve the stability of the device. In this paper, we focus on the impact of interface engineering on the performance of PSCs, specifically the modification of the buried interface. We highlight the influence of modifying the interface between the electron transport layer (ETL)/perovskite and the hole transport layer (HTL)/perovskite. By effectively modifying these buried interfaces, we achieve significant improvements in device efficiency and stability. Through comparing different materials and experimental methods, we explore a promising pathway for improving device performance. Finally, we provide an outlook on the future of PSCs.
Key words:  perovskite solar cell    interface modification    bottom interface    efficiency    stability    electron transport layer
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  O469  
基金资助: 国家自然科学基金(51802210);江苏省优秀青年基金(BK20220118);江苏省高等学校自然科学研究面上项目(22KJD430009)
通讯作者:  卢豪,苏州科技大学材料科学与工程学院副教授、硕士研究生导师。目前从事光电转换领域的研究,主要集中在太阳能电池、光电探测器和光电化学电池(光解水)方面的研究。获批主持江苏省优秀青年科学基金、国家自然科学基金等项目,论文被引1 400余次,H因子19。haolu@usts.edu.cn   
作者简介:  杜一,2020年6月于苏州大学文正学院获得理学学士学位。现为苏州科技大学物理学硕士研究生,在卢豪副教授的指导下进行研究。目前主要研究领域为钙钛矿太阳能电池。
引用本文:    
杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
DU Yi, GU Bangkai, CHEN Xi, LI Xiabing, LU Hao. Impact of the Bottom Interface Modification on the Perovskite Solar Cells. Materials Reports, 2024, 38(7): 22080111-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22080111  或          https://www.mater-rep.com/CN/Y2024/V38/I7/22080111
1 Yang W S, Park B W, Jung E H, et al. Science, 2017, 356, 1376.
2 Lee J W, Kim H S, Park N G, et al. Accounts of Chemical Research, 2016, 49, 311.
3 Ahn N, Son D Y, Jang I H, et al. Chemical Society Reviews, 2015, 137, 8696.
4 Schulz P. ACS Energy Letters, 2018, 3, 1287.
5 Fakhruddin A, Schmidt-Mende L, Garcia-Belmonte G, et al. Energy Materials, 2017, 7, 1700623.
6 Ou Q D, Li C, Wang Q K, et al. Advanced Materials Interfaces, 2017, 4, 1600694.
7 Rajagopal A, Yao K, Jen A K Y, et al. Advanced Materials, 2018, 30, 1800455.
8 Meng L, Yao E P, Hong Z, et al. Advanced Materials, 2016, 29, 1603826.
9 Kim D B, Yu J C, Kim D W, et al. Journal of Materials Chemistry C, 2016, 4, 8161.
10 Dai X, Zhang Z, Jin Y, et al. Nature, 2014, 515, 96.
11 Xing G, Mathews N, Lim S S, et al. Nature Materials, 2014, 13, 476.
12 Dou L, Yang Y, You J, et al. Nature Communication, 2014, 5, 5404.
13 Wang Y, Li X, Song J, et al. Advanced Materials, 2015, 13, 476.
14 Wang S, Sakurai T, Wen W, et al. Advanced Materials Interfaces, 2017, 5, 1800260.
15 Tress W. Advanced Energy Materials, 2017, 7, 1602358.
16 Kim M, Motti S G, Sorrentino R, et al. Energy & Environmental Science, 2018, 11, 151.
17 Liu C, Yuan J, Jia X, et al. Advanced Materials, 2021, 33, 1905245.
18 Stolterfoht M, Wolff C M, Márquez J A, et al. Nature Energy, 2018, 3, 847.
19 Harvey S P, Zhang F, Palmstrom A, et al. ACS Applied Materials & Interfaces, 2019, 11, 30911.
20 Wang Y, Barbaud J, Wu T, et al. Science, 2019, 365, 687.
21 Wolff C M, Rehermann C, Zu F, et al. ACS Nano, 2020, 14, 1445.
22 Zhu X, Du M, Feng J, et al. Angelate Chemical International Edition, 2021, 60, 4238.
23 Kim S G, Le T H, Goubard F, et al. Advanced Materials, 2021, 33, 2007431.
24 Jang Y W, Lee S, Yeom K M, et al. Nature Energy, 2021, 6, 63.
25 Ni Z, Bao C, Liu Y, et al. Science, 2020, 367, 1352.
26 Xiao M, Joglekar S, Zhang X, et al. Journal of the American Chemical Society, 2017, 139, 3378.
27 Xiao M, Lu T, Lin T, et al. Advanced Energy Materials, 2020, 10, 1903053.
28 Yang X, Luo D, Xiang Y, et al. Advanced Materials, 2021, 33, 2006435.
29 Chen S, Dai X, Xu S, et al. Science, 2021, 373, 902.
30 Tan H, Jain A, Lan X, et al. Science, 2017, 355, 722.
31 Yang Y, Terentjev E M, Wei Y, et al. Nature Communication, 2018, 9, 3239.
32 Hui W, Yang Y, Xu Q, et al. Advanced Materials, 2019, 32, 1906374.
33 Xong Z, Lan L, Wang Y, et al. ACS Energy Letters, 2021, 6, 3824.
34 Pazos-Outón L M, Xiao T P, Yablonovitch E, et al. Journal of Physical Chemistry Letters, 2018, 9, 1703.
35 Wang F, Hamasaki A, Yang F, et al. Journal of Physical Chemistry C, 2017, 121, 1562.
36 Ma X, Yang L, Shang X, et al. Chemical Engineering Journal, 2021, 426, 130685.
37 Zhang P, Wu J, Zhang T, et al. Advanced Materials, 2018, 30, 1703737.
38 Dai Z, Aravalli S K, Chen M, et al. Science, 2021, 372, 618.
39 Chen W, Zhou Y, Chen G, et al. Advanced Energy Materials, 2019, 9, 1803872.
40 Gao Z W, Wang Y, Liu H, et al. Small Methods, 2020, 4, 2000478.
41 Jung E H, Chen B, Bertens K, et al. ACS Energy Letters, 2020, 5, 2796.
42 Kim S Y, Cho S J, Byeon S E, et al. Advanced Energy Materials, 2020, 10, 2002606.
43 Boyd C C, Shallcross R C, Moot T, et al. Joule, 2020, 4, 1759.
44 Urartian H, Yamashita K. Journal of Physical Chemistry Letters, 2017, 8, 742.
45 Wu X, Trinh M T, Zhu H, et al. Journal of the American Chemical Society, 2015, 137, 2089.
46 Kerner R A, Rand B P. Journal of Physical Chemistry Letters, 2017, 8, 2298.
47 Shallcross R C, Olthof S, Meerholz K, et al. ACS Applied Materials & Interfaces, 2019, 11, 32500.
48 Hu T, Becker T, Zhao J, et al. Advanced Materials, 2017, 29, 1606656.
49 Cheng Y, Yang Q D, Xiao J, et al. ACS Applied Materials & Interfaces, 2015, 7, 19986.
50 Yang J, Siempelkamp B D, Mosconi E, et al. Chemistry of Materials, 2015, 27, 4229.
51 Schutt K, Nayak P K, Ramadan A J, et al. Advanced Functional Materials, 2019, 29, 1900466.
52 Bails N, Zekey A A, Perganti D, et al. ACS Applied Energy Materials, 2018, 1, 6161.
53 Zhao X, Tao L, Li H, et al. Nano Letters, 2018, 18, 2442.
54 Qin P, Wu T, Wang Z, et al. Solar RRL, 2019, 3, 1900134.
55 Liu D, Zheng H, Ji L, et al. Journal of Power Sources, 2019, 441, 227161.
56 Chen Q, Yuan L, Duan R, et al. Solar RRL, 2019, 3, 1900118.
57 Islam A, Li J, Pervaiz M, et al. Advanced Energy Materials, 2019, 9, 1803354. 1
58 Zheng X, Chen B, Dai J, et al. Nature Energy, 2017, 2, 17102.
59 Hou M, Zhang H, Wang Z, et al. ACS Applied Materials & Interfaces, 2018, 10, 30607.
60 Park M, Kim J Y, Son H J, et al. Nano Energy, 2016, 26, 208.
61 Choi K, Lee J, Kim H I, et al. Energy Environment Science, 2018, 11, 3238.
62 Chen J, Zhao X, Kim S G, et al. Advanced Materials, 2019, 31, 1902902.
63 Jung E H, Chen B, Bertens K, et al. ACS Energy Letters, 2020, 5, 2796.
64 Zheng D, Peng R, Wang G, et al. Advanced Materials, 2019, 31, 1903239.
65 Zhang C C, Yuan S, Luo Y H, et al. Advanced Materials, 2020, 32, 2001479.
66 Yang D, Yang R, Wang K, et al. Nature Communication, 2018, 9, 3239.
67 Choi K, Lee J, Kim H I, et al., Energy Environment Science, 2018, 11, 3238.
68 Chen J, Zhao X, Kim S G, et al, Advanced Materials, 2019, 31, 1902902.
69 Jung E H, Bertans B, Chen K, et al, ACS Energy Letters, 2020, 5, 2796.
70 Zhang S, Su J, Lin Z, et al. Advance Materails Interfaces, 2019, 6, 1900400.
71 Xiong L B, Qin M C, Chen C, et al. Advanced Functional Materials, 2018, 28(10), 1706276.
72 Shin S, Lee S J, Seok S I, et al. Advanced Functional Materials, 2019, 29, 1900455.
73 Ma J, Yang G, Qin M, et al. Advanced Science, 2017, 4, 1700031.
74 Marin-Beloid J M, Lanett L, Palomares E, et al. Chemical Materials, 2016, 28, 207.
75 Ding B, Huang S Y, Chu Q Q, et al. Journal of Materials Chemistry A, 2018, 6, 10233.
76 Wang F, Zhang Y, Yang M, et al. Nano Energy, 2019, 63, 103825.
77 Cao J, Wu B, Chen R, et al. Advanced Materials, 2018, 30, 1705596.
78 Gao X X, Luo W, Zhang Y, et al. Advanced Materials, 2020, 32, 1905502.
79 Song S, Kang G, Lim C, et al. ACS Energy Letters, 2017, 2, 2667.
80 Tawakoni M M, Yadav P, Tavakoli R, et al. Advanced Energy Materials, 2018, 8, 1800794.
81 Wang P, Li R, Chen B, et al. Advanced Materials, 2020, 32, 1905766.
82 Chen B, Rudd P N, Yang S, et al. Chemical Society Reviews, 2019, 48, 3842.
83 Li W, Zhang W, Sutton R J, et al. Energy Environment Science, 2016, 9, 490.
84 Li W, Li J, Niu G, et al. Journal of Materials Chemistry A, 2016, 4, 11688.
85 Wang P, Wang J, Zhang X, et al. Journal of Materials Chemistry A, 2018, 6, 15853.
86 Jing M, Xing G, Zhou L, et al. ACS Applied Energy Materials, 2018, 1, 3826.
87 Spalla M, Perrin L, Planes E, et al. ACS Applied Energy Materials, 2020, 3, 3282.
88 Yuan R, Cai B, Lv Y, et al. Energy Environment Science, 2021, 14, 2906.
89 Wang Z, Fan P, Zhang D, et al. Synthetic Metals, 2020, 265, 116428
90 Li Y, Li W, Li L, et al. Science China Chemistry, 2019, 62, 767
91 Jiang Q, Zhang L, Yang X, et al. Nature Energy, 2016, 2(1), 16177. 14
92 Meng L, Sun C, Wang R, et al. Journal of the American Chemical Society, 2018, 140, 17255.
93 Dong Q, Shi Y, Zhang C, et al. Nano Energy, 2017, 40, 336
94 Jung E H, Jeon N J, Park E Y, et al. Nature, 2019, 567, 511.
95 Zhao Y, Zhang S, Bi F, et al. Journal of Materials Chemistry C, 2022, 12, 3927
96 Zhang D, Zeng W, Lin R, et al. Advanced Functional Materials, 2022, 3, 2216
97 Chen W, Sun K, Ma C, et al, Organic Electronic, 2018, 58, 283
98 Liang L, Luo H, Hu J, et al. Advanced Energy Materials, 2020, 10, 2000197.
99 Zhu H, Liu Y, Pan L, et al. Advanced Materials, 2020, 32, 1907757.
100 Jiang Q, Zhao Y, Zhao X, et al. Nature Photonics, 2019, 13, 460.
101 Ma K, Atapattu H R, Zhao Q, et al. Advanced Materials, 2021, 33, 2100791.
102 Zhu Z, Bai Y, Liu X, et al. Advanced Materials, 2016, 28, 6478.
103 Wang C, Zhao D, Liao W, et al. Material Chemical A, 2016, 4, 12080.
104 Zhong M, Liang Y, Zhang J, et al. Material Chemical A, 2019, 7, 6659.
105 Tian C, Lin K, Lu J, et al. Small Methods, 2020, 4, 1900476.
106 Cao T, Chen K, Chen Q, et al. ACS Applied Materials Interfaces, 2019, 11, 33825.
107 Wang S, Chen H, Zhang J, et al. Advanced Materials, 2019, 31, 1903691.
108 Liu K, Chen S, Wu J, et al. Energy Environment Science, 2018, 1, 3463.
109 Li Z, Liu C, Zhang X. et al. Small, 2018, 15, 1804692.
110 Zhang H, Xiao J, Shi J, et al. Advanced Function Materials, 2018, 28, 1802985.
111 Meng X, Zhou J, Hou J, et al. Advanced Materials, 2018, 30, 1706975.
112 Zhang F, Shi W, Luo J, et al. Advanced Materials, 2017, 29, 1606806.
113 Wang Y, Wu T, Kong W, et al. Science, 2019, 365, 687.
114 Yu X, Li J, Mo Y, et al. Journal of Energy Chemistry, 2022, 201, 208.
115 Chen C S, Chen J X, Han H C, et al. Science, 2022, 377, 428.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 范浩博, 豆书亮, 李垚. 二氧化钒智能热控涂层光学结构原理及研究进展[J]. 材料导报, 2025, 39(1): 24100229-10.
[3] 赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
[4] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[5] 李娇娇, 范婧, 王重. 非晶合金中剪切温升的研究进展[J]. 材料导报, 2024, 38(8): 22050070-8.
[6] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[7] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[8] 江巍雪, 汤新宇, 宋金蔚, 徐祚, 张源. 纳米流体的制备、稳定性及热物性研究进展[J]. 材料导报, 2024, 38(4): 22060208-11.
[9] 刘悦卿, 赵江涛, 王凤青, 刘雷, 丁勇, 孙颖莉, 闫阿儒. 铝镍钴永磁材料的研究进展[J]. 材料导报, 2024, 38(23): 23080088-10.
[10] 赵登婕, 李康宁, 胡李纳, 闫彤, 杨艳坤, 郝阳, 张晨曦, 郝玉英. 氧化锡电子传输层在正置钙钛矿太阳能电池中的研究进展[J]. 材料导报, 2024, 38(21): 23040102-11.
[11] 吕乐阳, 张翔宇, 董必钦, 王险峰, 邢锋. 自修复混凝土触发机制设计方法综述[J]. 材料导报, 2024, 38(20): 23080206-12.
[12] 王蜀湘, 卢星宇, 邹力, 任洁, 王留留, 谢佳乐. Si光阳极稳定性提高策略研究进展[J]. 材料导报, 2024, 38(2): 21100131-9.
[13] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[14] 李力敏, 党莹樱, 黄锦阳, 刘鹏, 李沛, 鲁金涛, 袁勇. 长期时效对镍铁基高温合金组织和冲击韧性的影响[J]. 材料导报, 2024, 38(18): 23050036-6.
[15] 李晓, 赵莹莹, 故丽孜巴·阿不都热西提, 贾兴文, 钱觉时. 磷酸镁水泥高温性能研究进展[J]. 材料导报, 2024, 38(17): 23120217-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed