Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 23120217-8    https://doi.org/10.11896/cldb.23120217
  新型高性能磷酸镁胶凝材料 |
磷酸镁水泥高温性能研究进展
李晓, 赵莹莹, 故丽孜巴·阿不都热西提, 贾兴文*, 钱觉时
重庆大学材料科学与工程学院,重庆 400045
Research Progress on High-temperature Performance of Magnesium Phosphate Cement
LI Xiao, ZHAO Yingying, ERBUDUREXITI Guliziba, JIA Xingwen*, QIAN Jueshi
School of Materials Science and Engineering, Chongqing University, Chongqing 400045, China
下载:  全 文 ( PDF ) ( 13905KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磷酸镁水泥(MPC)具有良好的高温性能,在钢结构防护、放射性和危险废物固化等领域具有良好的应用前景,在高端设备热防护和飞行器热障涂层等高温场景也具有良好的应用潜力。本文综述了MPC的水化机制及其在高温状态下的物理力学性能和水化产物的演化规律,总结了MPC在钢结构防火以及放射性和危险废物固化等领域的应用基础研究进展和存在的问题,从绝热性能、力学性能和高温体积稳定性三个主要方向给出了进一步改善MPC高温性能的建议,期望能够为促进MPC在高温场景的实际应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李晓
赵莹莹
故丽孜巴·阿不都热西提
贾兴文
钱觉时
关键词:  磷酸镁水泥  高温性能  力学性能  物相演变  体积稳定性  防火材料    
Abstract: Magnesium phosphate cement (MPC) with excellent high-temperature performance has good application prospects not only in steel structure protection, radioactive and hazardous waste solidification fields, but also in high-temperature scenarios such as high-end equipment thermal protection and aircraft thermal barrier coatings. The paper summarizes the hydration mechanism of MPC and its physical and mechanical properties at high temperatures, as well as the evolution law of hydration products. Then the basic research progress and existing problems of the application of MPC in steel structure fire prevention, radioactive and hazardous waste solidification are summarized, and the suggestions for further improving the high-temperature performance of MPC are proposed from three main directions, including insulation performance, mechanical performance, and high-temperature volume stability, so as to provide reference for promoting the practical application of MPC in high-temperature scenarios.
Key words:  magnesium phosphate cement    high-temperature performance    mechanical property    phase evolution    volume stability    fireproof material
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TU526  
基金资助: 国家自然科学基金(52072049)
通讯作者:  *贾兴文,重庆大学材料学院教授2009年6月于重庆大学获工学博士学位。研究方向为磷酸镁胶凝材料和固体废弃物建材资源化。jiaxw@cqu.edu.cn   
作者简介:  李晓,重庆大学材料科学与工程学院博士研究生。2019年6月于燕山大学获工学学士学位,2022年6月于天津大学获工学硕士学位。研究方向为磷酸镁水泥防护材料。
引用本文:    
李晓, 赵莹莹, 故丽孜巴·阿不都热西提, 贾兴文, 钱觉时. 磷酸镁水泥高温性能研究进展[J]. 材料导报, 2024, 38(17): 23120217-8.
LI Xiao, ZHAO Yingying, ERBUDUREXITI Guliziba, JIA Xingwen, QIAN Jueshi. Research Progress on High-temperature Performance of Magnesium Phosphate Cement. Materials Reports, 2024, 38(17): 23120217-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23120217  或          http://www.mater-rep.com/CN/Y2024/V38/I17/23120217
1 Prosen E M. U. S. patent, 2152152, 1939.
2 Stierli R F, Tarver C C, Gaidis J M. U. S. patent, 3960580, 1976.
3 Jiang H L, Zhang J W, Li T, et al. Construction and Building Materials, 2022, 326, 126821.
4 Liu F, Pan B F, Zhou C J. Journal of Materials in Civil Engineering, 2022, 34(3), 04021483.
5 Chen B, Oderji S Y, Chandan S, et al. Construction and Building Materials, 2017, 154, 270.
6 Zhang Q S, Cao X, Ma R, et al. Construction and Building Materials, 2021, 297, 123761.
7 Zhang Y Y, Wan Z H, Wang L, et al. Environmental Science & Technology, 2022, 56(13), 9398.
8 Dai F L, Ding J H, Wang H T, et al. Acta Scientiae Circumstantiae, 2017, 37(5), 1819 (in Chinese).
戴丰乐, 丁建华, 汪宏涛, 等. 环境科学学报, 2017, 37(5), 1819.
9 Wagh A S. International Scholarly Research Notices, 2013, 2013, 983731.
10 Jun L, Yongsheng J, Linglei Z, et al. Construction and Building Materials, 2019, 195, 156.
11 Sugama T, Kukacka L E. Cement and Concrete Research, 1983, 13(3), 407.
12 Gardner L J, Corkhill C L, Walling S A, et al. Cement and Concrete Research, 2021, 143, 106375.
13 Gardner L J, Walling S A, Lawson S M, et al. Inorganic Chemistry, 2020, 60(1), 195.
14 Lahalle H, Coumes C C D, Mesbah A, et al. Cement and Concrete Research, 2016, 87, 77.
15 Fedorocková A, Raschman P. Chemical Engineering Journal, 2008, 143(1-3), 265.
16 Fruhwirth O, Herzog G W, Hollerer I, et al. Surface Technology, 1985, 24(3), 301.
17 Viani A, Peréz-Estébanez M, Pollastri S, et al. Cement and Concrete Research, 2016, 79, 344.
18 Soudée E, Péra J. Cement and Concrete Research, 2000, 30(2), 315.
19 Holt S A, Jones C F, Watson G S, et al. Thin Solid Films, 1997, 292(1-2), 96.
20 Wagh A S, Jeong S Y. Journal of the American Ceramic Society, 2003, 86(11), 1838.
21 Viani A, Gualtieri A F. Cement and Concrete Research, 2014, 58, 56.
22 Dai F L, Wang H T, Jiang Z C, et al. Chinese Journal of Materials Research, 2018, 32(4), 247 (in Chinese).
戴丰乐, 汪宏涛, 姜自超, 等. 材料研究学报, 2018, 32(4), 247.
23 Le Rouzic M, Chaussadent T, Platret G, et al. Cement and Concrete Research, 2017, 91, 117.
24 Xu B W, Lothenbach B, Leemann A, et al. Cement and concrete research, 2018, 108, 140.
25 Ding Z, Dong B Q, Xing F, et al. Ceramics International, 2012, 38(8), 6281.
26 Viani A, Sotiriadis K, Sasek P, et al. Ceramics International, 2016, 42(14), 16310.
27 Neiman R, Sarma A C. Journal of dental research, 1980, 59(9), 1478.
28 Qoku E, Scheibel M, Bier T, et al. Construction and Building Materials, 2021, 272, 121654.
29 Lai Z Y. Immobilization of medium and low level radioactive wastes by magnesium phosphate cement. Ph.D. Thesis, Chongqing University, China, 2012 (in Chinese).
赖振宇. 磷酸镁水泥固化中低放射性废物研究. 博士学位论文, 重庆大学, 2012.
30 Jiang Z C, Qi Z Q, Li S, et al. Contemporary Chemical Industry, 2016, 45(11), 2541 (in Chinese).
姜自超, 齐召庆, 李帅, 等. 当代化工, 2016, 45(11), 2541.
31 Chen X, Chen S K, Yan D M, et al. Bulletin of the Chinese Ceramic Society, 2022, 41(3), 1031 (in Chinese).
陈新, 陈士堃, 闫东明, 等. 硅酸盐通报, 2022, 41(3), 1031.
32 You C. Hydration and hardening of magnesium phosphate cement and stability of hydration products. Ph.D. Thesis, Chongqing University, China, 2017 (in Chinese).
尤超. 磷酸镁水泥水化硬化及水化产物稳定性. 博士学位论文, 重庆大学, 2017.
33 Dai X B, Ren W X, Qin J H, et al. Construction and Building Materials, 2023, 376, 131015.
34 Lai Z Y, Qian J S, Lu Z Y, et al. Journal of Functional Materials, 2012, 43(15), 2065 (in Chinese).
赖振宇, 钱觉时, 卢忠远, 等. 功能材料, 2012, 43(15), 2065.
35 Yang J M, Qian C X. Journal of Wuhan University of Technology-Materials Science Edition, 2010, 25(4), 613.
36 Luo W Z. The process of using industrial-grade monoammonium phosphate to product food-grade potassium polyphosphate. Master's Thesis, Wuhan Instituteof Technology, China, 2017 (in Chinese).
骆万智. 工业级磷酸一铵制备食品级聚偏磷酸钾的工艺研究. 硕士学位论文, 武汉工程大学, 2017.
37 Hipedinger N E, Scian A N, Aglietti E F. Cement and Concrete Research, 2004, 34(1), 157.
38 Pan Y, Zhao H T. Journal of Applied Polymer Science, 2018, 135(32), 46583.
39 Li Z, Qin J H, You C, et al. Journal of the Chinese Ceramic Society, 2019, 47(11), 1559 (in Chinese).
李振, 秦继辉, 尤超, 等. 硅酸盐学报, 2019, 47(11), 1559.
40 Feng H, Sheikh M N, Hadi M N S, et al. Construction and Building Materials, 2018, 185, 648.
41 Dong Y H. Anti-corrosion effect of magnesium phosphate cement coating on carbon steel. Master's Thesis, Southwest Jiaotong University, China, 2017 (in Chinese).
董英豪. 碳钢表面磷酸镁水泥涂层的防腐性研究. 硕士学位论文, 西南交通大学, 2017.
42 Tang H, Qian J S, Ji Z W, et al. Construction and Building Materials, 2020, 255, 119422.
43 Fan Y R. Study on bond properties of magnesium phosphate cement based materials. Ph. D. Thesis, Chongqing University, China, 2016, (in Chinese).
范英儒. 磷酸镁水泥基材料的修补粘结性能研究. 博士学位论文, 重庆大学, 2016.
44 Wagh A S. Chemically bonded phosphate ceramics:Twenty-first century materials with diverse applications, Elsevier, NL, 2016, pp.59.
45 Shao X Y. Study on the preparation of magnesium-potassium phosphate cement fireproof coatings for steel structure. Master's Thesis, Fuzhou University, China, 2017 (in Chinese).
邵晓燕. 磷酸钾镁水泥基钢结构防火涂料的制备研究. 硕士学位论文, 福州大学, 2017.
46 Wen J. Structural desing and fire performance evaluation of MKPC based fire retardant coatings for steel structures. Master's Thesis, AnHui University of Science and Technology, China, 2020 (in Chinese).
温婧. Mkpc基钢结构防火涂料组成结构设计及其防火性能评价. 硕士学位论文, 安徽理工大学, 2020.
47 Dai X B, Qian J S, Qin J H, et al. Materials, 2022, 15(12), 4134.
48 Fu M J. Solidification simulated high level liquid waste by magnesium phosphate cement. Master's Thesis, Chongqing University, China, 2018 (in Chinese).
傅明娇. 磷酸镁水泥固化模拟高放核废液. 硕士学位论文, 重庆大学, 2018.
49 Paraskevoulakos C, Stitt C A, Hallam K R, et al. Construction and Building Materials, 2019, 215, 90.
50 Fu M J, Yang H L, Wu C M, et al. Materials Reports, 2017, 31(24), 86 (in Chinese).
傅明娇, 杨海林, 吴传明, 等. 材料导报, 2017, 31(24), 86.
51 Cao J S. Bulletin of the Chinese Ceramic Society, 2017, 36(4), 1452 (in Chinese).
曹集舒. 硅酸盐通报, 2017, 36(4), 1452.
52 Yang H L. Study on the application of magnesium potassium phosphate cement in emergency solidification of high level liquid waste. Ph.D. Thesis, Chongqing Uinversity, China, 2020 (in Chinese).
杨海林. 磷酸钾镁水泥用于高放废液应急固化的研究. 博士学位论文, 重庆大学, 2020.
53 Huang C C. Solidification simulated high level liquid waste by magnesium phosphate cement. Master's Thesis, Southwest University of Science and Technology, China, 2016 (in Chinese).
黄陈程. 磷酸镁水泥固化模拟高放废液. 硕士学位论文, 西南科技大学, 2016.
54 Zhu A Y, Wu H L, Wang Y D, et al. Construction and Building Materials, 2023, 400, 132692.
55 Zhuang J P, Xu R X, Lin P F, et al. Theoretical and Applied Fracture Mechanics, 2023, 124, 103765.
56 Jiang Z C, Wang H T, Dai F L, et al. New Building Materials, 2017, 44(2), 82 (in Chinese).
姜自超, 汪宏涛, 戴丰乐, 等. 新型建筑材料, 2017, 44(2), 82.
57 Jia G H, Li Z, Liu P, et al. Journal of Non-Crystalline Solids, 2018, 482, 192.
58 Lin Y F, Li X G, Huang Q H. Energy and Buildings, 2021, 231, 110637.
59 Cirstea N F, Badanoiu A I, Voicu G, et al. Journal of Building Engineering, 2023, 76, 107345.
60 Fang Y, Yin X, Cui P, et al. Construction and Building Materials, 2021, 293, 123513.
61 Chen S N, Lin C, Hsu H L, et al. Materials, 2022, 15(15), 5317.
62 Gardner L, Lejeune V, Corkhill C, et al. Advances in Applied Ceramics, 2015, 114(7), 386.
63 Gardner L J, Walling S A, Corkhill C L, et al. Cement and Concrete Research, 2021, 141, 106332.
64 Yu J C, Qian J S, Chen H X, et al. Construction and Building Materials, 2023, 401, 132932.
65 Zhang X, Li G X, Niu M D, et al. Construction and Building Materials, 2018, 175, 768.
66 Gao X J, Zhang A L, Li S X, et al. Materials and Structures, 2016, 49, 3423.
67 Yang Y Q, Liu Y, Yan Z Z, et al. Materials, 2022, 15(24), 8967.
68 Yang Z H, Liu S J, Wu K, et al. Materials Reports, 2023, 37(1), 118 (in Chinese).
杨正宏, 刘思佳, 吴凯, 等. 材料导报, 2023, 37(1), 118.
69 Fang Y, Cui P, Ding Z, et al. Construction and Building Materials, 2018, 162, 553.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[8] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[9] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[10] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[11] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[12] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[13] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[14] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[15] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed