Research Progress and Challenges of Anode for Reversible Zinc-Air Batteries
WANG Yue, ZHOU Benji, XU Nengneng*, QIAO Jinli*
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai 201600, China
Abstract: Zinc-air battery has attracted wide attention because of its high safety, large capacity, low cost and environmental friendliness. Among them, the design and development of cathode bifunctional catalyst for zinc-air battery has made breakthrough progress. Therefore, the reversibility of zinc anode has become the key to determine the charging and discharging performance of zinc-air battery. However, the zinc anode still faces serious challenges such as dendrite, deformation, passivation and hydrogen evolution corrosion, which directly hinders the practical application of reversible zinc-air batteries. Therefore, this paper systematically introduces the research status of zinc anode from four aspects, dendrite formation, electrode deformation, passivation and hydrogen evolution corrosion. The effects of additives, coatings, separators and charging methods on the growth of zinc dendrites are discussed. The mechanism of electrode deformation and common solutions are studied. The key factors and influencing mechanism of zinc anode passivation are summarized. The inhibition of alloy components on hydrogen evolution corrosion is analyzed. Finally, based on the current research status of zinc anode, this paper looks forward to various strategies and research directions for obtaining stable and reversible zinc anode.
通讯作者: *徐能能,东华大学副研究员、硕士研究生导师。2019年获东华大学环境科学与工程工学博士学位,并在美国University of Louisiana at Lafayatee开展联合培养、博士后以及助理教授等研究工作,长期致力于能源环境材料的开发、设计及应用,包括小分子电催化电极材料结构优化、电极表界面调控及高比能锌空气电池/燃料电池等;发表期刊论文40余篇,授权发明/实用新型专利16项;先后主持/参与了美国能源部/国家自然基金项目、上海市启明星计划扬帆专项以及中央高校基础研究项目等项目。 乔锦丽,东华大学教授,先进电化学能源学术带头人。获日本独立行政法人山口大学大学院物质工学(应用电化学)博士学位。随后于日本产业技术综合研究所(AIST)任研究员。长期专注于先进电化学能源存储和转换材料与器件,包括燃料电池、金属空气电池、CO2电化学还原等领域的基础研究和应用研究。以第一/通信作者发表期刊论文230余篇,撰写/编著电化学能源系列英文专著6部/10章节,获日本/中国发明专利授权40余项。入选"全球前2%顶尖科学家榜单"(World's Top 2% Scientists,终身科学影响力)。先后主持国家面上/联合/重大前瞻项目以及国家重点研发计划政府间专项等。
1 Walsh F C. Pure and Applied Chemistry, 2001, 73(12), 1819. 2 Lopes P P. ACS Materials Au, 2023, 3(1), 8. 3 Wang H F, Xu Q. Matter, 2019, 1(3), 565. 4 Zhang X, Wang X G, Xie Z, et al. Green Energy & Environment, 2016, 1(1), 4. 5 Siahrostami S. ACS Energy Letters, 2022, 7(8), 2717. 6 Fu J, Cano Z P, Park M G, et al. Advanced Materials, 2017, 29(7), 1604685. 7 Huang Y, Wang Y, Tang C, et al. Advanced Materials, 2019, 31(13), 1803800. 8 Fu J, Hassan F M, Zhong C, et al. Advanced Materials, 2017, 29(35), 1702526. 9 Rahman M A, Wang X, Wen C. Journal of the Electrochemical Society, 2013, 160(10), A1759. 10 Mckerracher R D, Poncedeleon C, Wills R G A, et al. ChemPlusChem, 2015, 80(2), 323. 11 Yan X, Ha Y, Wu R. Small Methods, 2021, 5(4), 2000827. 12 Yang D, Zhang L, Yan X, et al. Small Methods, 2017, 1(12), 1700209. 13 Liu H, Liu Q, Wang Y, et al. Chinese Chemical Letters, 2022, 33(2), 683. 14 Caramia V, Bozzini B. Materials for Renewable and Sustainable Energy, 2014, 3(2), 28. 15 Peng L, Shang L, Zhang T, et al. Advanced Energy Materials, 2020, 10(48), 2003018. 16 Chang J, Wang G, Yang Y. Small Science, 2021, 1(10), 2100044. 17 Ramakrishnan S, Balamurugan J, Vinothkannan M, et al. Applied Catalysis B: Environmental, 2020, 279, 119381. 18 Jiao M, Zhang Q, Ye C, et al. ACS Nano, 2022, 16(8), 13223. 19 Peng L, Shang L, Zhang T, et al. Advanced Energy Materials, 2020, 10(48), 2003018. 20 Zhong Y, Xu X, Wang W, et al. Batteries & Supercaps, 2019, 2(4), 272. 21 Tang K, Hu H, Xiong Y, et al. Angewandte Chemie International Edition, 2022, 61(24). 22 Jiao M, Zhang Q, Ye C, et al. Proceedings of the National Academy of Sciences, 2022, 119(20). 23 Lee D U, Choi J Y, Feng K, et al. Advanced Energy Materials, 2014, 4(6), 1301389. 24 Xiao W, Cordeiro M A L, Gao G, et al. Nano Energy, 2018, 50, 70. 25 Mohamad A A. Journal of Power Sources, 2006, 159(1), 752. 26 Yang D, Tan H, Rui X, et al. Electrochemical Energy Reviews, 2019, 2(3), 395. 27 Fu J, Liang R, Liu G, et al. Advanced Materials, 2019, 31(31), 1805230. 28 Li G, Liu Z, Huang Q, et al. Nature Energy, 2018, 3(12), 1076. 29 Cui B F, Han X P, Hu W B. Small Structures, 2021, 2(6), 2000128. 30 He M, Shu C, Zheng R, et al. Green Energy & Environment, 2023, 8(1), 318. 31 Chen Z, Yang X, Li W, et al. Small, 2021, 17(39), 2103048. 32 Wang T, Sun J, Hua Y, et al. Energy Storage Materials, 2022, 53, 273. 33 Xiao Y, Shi J, Zhao F, et al. Journal of the Electrochemical Society, 2018, 165(2), A47. 34 Park D J, Aremu E O, Ryu K S. Applied Surface Science, 2018, 456, 507. 35 Hosseini S, Abbasi A, Uginet L O, et al. Scientific Reports, 2019, 9(1), 14958. 36 Masri M N, Mohamad A A. Journal of the Electrochemical Society, 2013, 160(4), A715. 37 Lin M H, Huang C J. Journal of Materials Chemistry A, 2020, 8(39), 20637. 38 Wu Z, Li M, Tian Y, et al. Nano-Micro Letters, 2022, 14(1), 110. 39 Ma G, Miao L, Dong Y, et al. Energy Storage Materials, 2022, 47, 203. 40 Wang J M, Zhang L, Zhang C, et al. Journal of Power Sources, 2001, 102(1-2), 139. 41 Wang R Y, Kirk D W, Zhang G X. Journal of the Electrochemical Society, 2006, 153(5), C357. 42 Wen Y H, Cheng J, Zhang L, et al. Journal of Power Sources, 2009, 193(2), 890. 43 Yadav S K, Deckenbach D, Schneider J J. Batteries, 2022, 8(11), 244. 44 Deckenbach D, Schneider J J. Journal of Power Sources, 2021, 488, 229393. 45 Dong W, Shi J L, Wang T S, et al. RSC Advances, 2018, 8(34), 19157. 46 Li W, Wang K, Zhou M, et al. ACS Applied Materials & Interfaces, 2018, 10(26), 22059. 47 Chen S, Chen J, Liao X, et al. ACS Energy Letters, 2022, 7(11), 4028. 48 Liu M, Pu X, Cong Z, et al. ACS Applied Materials & Interfaces, 2019, 11(5), 5095. 49 Zhou X, Chen R, Cui E, et al. Energy Storage Materials, 2023, 55, 538. 50 Hao J, Li X, Zhang S, et al. Advanced Functional Materials, 2020, 30(30), 2001263. 51 Wang S, Yang Z, Chen B, et al. Energy Storage Materials, 2022, 47, 491. 52 Liu Y, Liu Q, Xin L, et al. Nature Energy, 2017, 2(7), 17083. 53 Arnot D J, Lim M B, Bell N S, et al. Advanced Energy Materials, 2021, 11(38), 2101594. 54 Díaz-patiño L, Béjar J, Ortiz-ortega E, et al. ChemElectroChem, 2022, 9(12) 55 Vatsalarani J, Trivedi D C, Ragavendran K, et al. Journal of the Electrochemical Society, 2005, 152(10), A1974. 56 Liu M, Cook G M, Yao N P. Journal of the Electrochemical Society, 1981, 128(8), 1663. 57 Wu Y, Zhang Y, Ma Y, et al. Advanced Energy Materials, 2018, 8(36), 1802470. 58 Yang H. Journal of Power Sources, 2004, 128(1), 97. 59 El-sayed A E R, Shilkamy H A E S, Elrouby M. International Journal of Hydrogen Energy, 2021, 46(61), 31239. 60 Wongrujipairoj K, Poolnapol L, Arpornwichanop A, et al. Physica Status Solidi(b), 2017, 254(2), 1600442. 61 Xu P, Wang C, Zhao B, et al. Journal of Colloid and Interface Science, 2021, 602, 859.