Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 23040162-10    https://doi.org/10.11896/cldb.23040162
  电化学能源材料与器件 |
可逆锌-空气电池锌阳极研究进展及挑战
王越, 周本基, 徐能能*, 乔锦丽*
东华大学环境科学与工程学院,纤维材料改性国家重点实验室,上海 201600
Research Progress and Challenges of Anode for Reversible Zinc-Air Batteries
WANG Yue, ZHOU Benji, XU Nengneng*, QIAO Jinli*
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai 201600, China
下载:  全 文 ( PDF ) ( 52584KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锌-空气电池因安全性高、容量大、成本低和环境友好等特点而受到广泛关注。其中,锌-空气电池阴极双功能催化剂的设计开发取得了突破性进展。因此,锌阳极的可逆性成为决定锌-空气电池充放电性能的关键。然而,锌阳极仍面临枝晶、形变、钝化、析氢腐蚀等严重挑战,直接阻碍了可逆锌-空气电池的实际应用。为此,本文从枝晶形成、电极形变、钝化、析氢腐蚀四个方面系统介绍了锌阳极研究现状;讨论了添加剂、涂层、隔膜和充电方式对锌枝晶生长的影响;提出了电极形变的机理和常见解决方案;归纳了锌阳极发生钝化的关键因素和影响机制;分析了合金组分对析氢腐蚀的抑制。最后,基于锌阳极当前的主要研究现状,本文展望了获得稳定可逆锌阳极的多种策略及研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王越
周本基
徐能能
乔锦丽
关键词:  可逆锌空气电池  锌阳极  枝晶生长  形变  钝化  析氢腐蚀    
Abstract: Zinc-air battery has attracted wide attention because of its high safety, large capacity, low cost and environmental friendliness. Among them, the design and development of cathode bifunctional catalyst for zinc-air battery has made breakthrough progress. Therefore, the reversibility of zinc anode has become the key to determine the charging and discharging performance of zinc-air battery. However, the zinc anode still faces serious challenges such as dendrite, deformation, passivation and hydrogen evolution corrosion, which directly hinders the practical application of reversible zinc-air batteries. Therefore, this paper systematically introduces the research status of zinc anode from four aspects, dendrite formation, electrode deformation, passivation and hydrogen evolution corrosion. The effects of additives, coatings, separators and charging methods on the growth of zinc dendrites are discussed. The mechanism of electrode deformation and common solutions are studied. The key factors and influencing mechanism of zinc anode passivation are summarized. The inhibition of alloy components on hydrogen evolution corrosion is analyzed. Finally, based on the current research status of zinc anode, this paper looks forward to various strategies and research directions for obtaining stable and reversible zinc anode.
Key words:  zinc-air battery    zinc anode    dendrite growth    shape change    passivation    hydrogen evolution corrosion
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TM911  
基金资助: 中央高校基本科研业务费专项资金(2232022D-18);上海市扬帆计划(22YF1400700);国家自然科学基金面上项目(21972017)
通讯作者:  *徐能能,东华大学副研究员、硕士研究生导师。2019年获东华大学环境科学与工程工学博士学位,并在美国University of Louisiana at Lafayatee开展联合培养、博士后以及助理教授等研究工作,长期致力于能源环境材料的开发、设计及应用,包括小分子电催化电极材料结构优化、电极表界面调控及高比能锌空气电池/燃料电池等;发表期刊论文40余篇,授权发明/实用新型专利16项;先后主持/参与了美国能源部/国家自然基金项目、上海市启明星计划扬帆专项以及中央高校基础研究项目等项目。
乔锦丽,东华大学教授,先进电化学能源学术带头人。获日本独立行政法人山口大学大学院物质工学(应用电化学)博士学位。随后于日本产业技术综合研究所(AIST)任研究员。长期专注于先进电化学能源存储和转换材料与器件,包括燃料电池、金属空气电池、CO2电化学还原等领域的基础研究和应用研究。以第一/通信作者发表期刊论文230余篇,撰写/编著电化学能源系列英文专著6部/10章节,获日本/中国发明专利授权40余项。入选"全球前2%顶尖科学家榜单"(World's Top 2% Scientists,终身科学影响力)。先后主持国家面上/联合/重大前瞻项目以及国家重点研发计划政府间专项等。   
作者简介:  王越,2020年6月于中北学院获得工学学士学位。现为东华大学环境科学与工程学院硕士研究生,师从东华大学乔锦丽教授。目前主要研究领域为锌-空气电池锌阳极设计、调控及性能优化。
引用本文:    
王越, 周本基, 徐能能, 乔锦丽. 可逆锌-空气电池锌阳极研究进展及挑战[J]. 材料导报, 2024, 38(6): 23040162-10.
WANG Yue, ZHOU Benji, XU Nengneng, QIAO Jinli. Research Progress and Challenges of Anode for Reversible Zinc-Air Batteries. Materials Reports, 2024, 38(6): 23040162-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23040162  或          https://www.mater-rep.com/CN/Y2024/V38/I6/23040162
1 Walsh F C. Pure and Applied Chemistry, 2001, 73(12), 1819.
2 Lopes P P. ACS Materials Au, 2023, 3(1), 8.
3 Wang H F, Xu Q. Matter, 2019, 1(3), 565.
4 Zhang X, Wang X G, Xie Z, et al. Green Energy & Environment, 2016, 1(1), 4.
5 Siahrostami S. ACS Energy Letters, 2022, 7(8), 2717.
6 Fu J, Cano Z P, Park M G, et al. Advanced Materials, 2017, 29(7), 1604685.
7 Huang Y, Wang Y, Tang C, et al. Advanced Materials, 2019, 31(13), 1803800.
8 Fu J, Hassan F M, Zhong C, et al. Advanced Materials, 2017, 29(35), 1702526.
9 Rahman M A, Wang X, Wen C. Journal of the Electrochemical Society, 2013, 160(10), A1759.
10 Mckerracher R D, Poncedeleon C, Wills R G A, et al. ChemPlusChem, 2015, 80(2), 323.
11 Yan X, Ha Y, Wu R. Small Methods, 2021, 5(4), 2000827.
12 Yang D, Zhang L, Yan X, et al. Small Methods, 2017, 1(12), 1700209.
13 Liu H, Liu Q, Wang Y, et al. Chinese Chemical Letters, 2022, 33(2), 683.
14 Caramia V, Bozzini B. Materials for Renewable and Sustainable Energy, 2014, 3(2), 28.
15 Peng L, Shang L, Zhang T, et al. Advanced Energy Materials, 2020, 10(48), 2003018.
16 Chang J, Wang G, Yang Y. Small Science, 2021, 1(10), 2100044.
17 Ramakrishnan S, Balamurugan J, Vinothkannan M, et al. Applied Catalysis B: Environmental, 2020, 279, 119381.
18 Jiao M, Zhang Q, Ye C, et al. ACS Nano, 2022, 16(8), 13223.
19 Peng L, Shang L, Zhang T, et al. Advanced Energy Materials, 2020, 10(48), 2003018.
20 Zhong Y, Xu X, Wang W, et al. Batteries & Supercaps, 2019, 2(4), 272.
21 Tang K, Hu H, Xiong Y, et al. Angewandte Chemie International Edition, 2022, 61(24).
22 Jiao M, Zhang Q, Ye C, et al. Proceedings of the National Academy of Sciences, 2022, 119(20).
23 Lee D U, Choi J Y, Feng K, et al. Advanced Energy Materials, 2014, 4(6), 1301389.
24 Xiao W, Cordeiro M A L, Gao G, et al. Nano Energy, 2018, 50, 70.
25 Mohamad A A. Journal of Power Sources, 2006, 159(1), 752.
26 Yang D, Tan H, Rui X, et al. Electrochemical Energy Reviews, 2019, 2(3), 395.
27 Fu J, Liang R, Liu G, et al. Advanced Materials, 2019, 31(31), 1805230.
28 Li G, Liu Z, Huang Q, et al. Nature Energy, 2018, 3(12), 1076.
29 Cui B F, Han X P, Hu W B. Small Structures, 2021, 2(6), 2000128.
30 He M, Shu C, Zheng R, et al. Green Energy & Environment, 2023, 8(1), 318.
31 Chen Z, Yang X, Li W, et al. Small, 2021, 17(39), 2103048.
32 Wang T, Sun J, Hua Y, et al. Energy Storage Materials, 2022, 53, 273.
33 Xiao Y, Shi J, Zhao F, et al. Journal of the Electrochemical Society, 2018, 165(2), A47.
34 Park D J, Aremu E O, Ryu K S. Applied Surface Science, 2018, 456, 507.
35 Hosseini S, Abbasi A, Uginet L O, et al. Scientific Reports, 2019, 9(1), 14958.
36 Masri M N, Mohamad A A. Journal of the Electrochemical Society, 2013, 160(4), A715.
37 Lin M H, Huang C J. Journal of Materials Chemistry A, 2020, 8(39), 20637.
38 Wu Z, Li M, Tian Y, et al. Nano-Micro Letters, 2022, 14(1), 110.
39 Ma G, Miao L, Dong Y, et al. Energy Storage Materials, 2022, 47, 203.
40 Wang J M, Zhang L, Zhang C, et al. Journal of Power Sources, 2001, 102(1-2), 139.
41 Wang R Y, Kirk D W, Zhang G X. Journal of the Electrochemical Society, 2006, 153(5), C357.
42 Wen Y H, Cheng J, Zhang L, et al. Journal of Power Sources, 2009, 193(2), 890.
43 Yadav S K, Deckenbach D, Schneider J J. Batteries, 2022, 8(11), 244.
44 Deckenbach D, Schneider J J. Journal of Power Sources, 2021, 488, 229393.
45 Dong W, Shi J L, Wang T S, et al. RSC Advances, 2018, 8(34), 19157.
46 Li W, Wang K, Zhou M, et al. ACS Applied Materials & Interfaces, 2018, 10(26), 22059.
47 Chen S, Chen J, Liao X, et al. ACS Energy Letters, 2022, 7(11), 4028.
48 Liu M, Pu X, Cong Z, et al. ACS Applied Materials & Interfaces, 2019, 11(5), 5095.
49 Zhou X, Chen R, Cui E, et al. Energy Storage Materials, 2023, 55, 538.
50 Hao J, Li X, Zhang S, et al. Advanced Functional Materials, 2020, 30(30), 2001263.
51 Wang S, Yang Z, Chen B, et al. Energy Storage Materials, 2022, 47, 491.
52 Liu Y, Liu Q, Xin L, et al. Nature Energy, 2017, 2(7), 17083.
53 Arnot D J, Lim M B, Bell N S, et al. Advanced Energy Materials, 2021, 11(38), 2101594.
54 Díaz-patiño L, Béjar J, Ortiz-ortega E, et al. ChemElectroChem, 2022, 9(12)
55 Vatsalarani J, Trivedi D C, Ragavendran K, et al. Journal of the Electrochemical Society, 2005, 152(10), A1974.
56 Liu M, Cook G M, Yao N P. Journal of the Electrochemical Society, 1981, 128(8), 1663.
57 Wu Y, Zhang Y, Ma Y, et al. Advanced Energy Materials, 2018, 8(36), 1802470.
58 Yang H. Journal of Power Sources, 2004, 128(1), 97.
59 El-sayed A E R, Shilkamy H A E S, Elrouby M. International Journal of Hydrogen Energy, 2021, 46(61), 31239.
60 Wongrujipairoj K, Poolnapol L, Arpornwichanop A, et al. Physica Status Solidi(b), 2017, 254(2), 1600442.
61 Xu P, Wang C, Zhao B, et al. Journal of Colloid and Interface Science, 2021, 602, 859.
[1] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[2] 赵晓燕, 王冬颖, 程从前, 曹铁山, 刘宝军, 姚景文, 赵杰. 利用电化学和显色检测法分级评估316L不锈钢钝化膜完整性[J]. 材料导报, 2024, 38(3): 22050337-5.
[3] 何永才, 丁蕾, 杨莹, 刘江, 何博, 张永哲, 严辉, 徐希翔. 基于丁二胺盐酸盐钝化的高效钙钛矿/晶硅叠层电池[J]. 材料导报, 2024, 38(20): 23070073-4.
[4] 伍红雨, 肖海, 曾向东, 赵晓昱. 导电水凝胶材料研究进展及在超级电容器的应用[J]. 材料导报, 2024, 38(19): 23060125-8.
[5] 何敬敬, 王旭, 牛强. 钙钛矿量子点在光伏电池中的应用进展[J]. 材料导报, 2024, 38(10): 22110228-13.
[6] 余海燕, 许方贤, 张帅, 袁宁一, 丁建宁. 一种低温退火处理提高锡基钙钛矿太阳能电池效率的方法[J]. 材料导报, 2023, 37(23): 23020020-5.
[7] 蒋平, 吕太勇, 吴丽华, José Pérez-Rigueiro, 胡梦蕾, 徐丽萍, 黄诗怡, 王安萍, 郭聪. 形变导致的蜘蛛大壶状腺丝力学行为的记忆与变异[J]. 材料导报, 2023, 37(23): 22050257-9.
[8] 任荣浩, 孙平, 王永光, 丁钊, 赵栋, 俞泽新. 壳聚糖在铝低压力化学机械抛光中的钝化作用及抛光行为研究[J]. 材料导报, 2023, 37(16): 22030222-6.
[9] 赵嘉豪, 庞玉华, 孙琦, 牛犇, 刘东, 张喆. 剧烈扭转压缩轧制45钢超细晶棒组织演变机理[J]. 材料导报, 2023, 37(15): 22010069-5.
[10] 张道琦, 张林, 郭晓, 王恩刚. Cu-Ag高强高导合金的研究现状与进展[J]. 材料导报, 2023, 37(13): 21040152-6.
[11] 刘泽辉, 杨银辉, 张凤珍, 王刘行. 大变形热压缩18.7Cr-5.8Mn-1.0Ni-0.23N节镍型双相不锈钢的晶间腐蚀行为研究[J]. 材料导报, 2023, 37(12): 22010176-10.
[12] 李朝阳, 黄光杰, 曹玲飞, 曹宇, 林林. 升温速率对AA2060铝锂合金中间形变热处理微观组织的影响[J]. 材料导报, 2022, 36(7): 21020008-7.
[13] 张尧, 毕恩兵, 茹鹏斌, 陈汉. 一种咪唑基离子液体钝化制备的高效反式钙钛矿太阳能电池[J]. 材料导报, 2022, 36(2): 21010190-6.
[14] 于娟, 李国爱, 冯朝辉, 陈军洲, 赵唯一. 中间形变热处理对铝锂合金短横向拉伸性能的影响[J]. 材料导报, 2022, 36(18): 20060118-5.
[15] 田永强, 苑清英, 付安庆, 何石磊, 周新义, 汪强, 杨晓龙, 陈浩明. Co1.5CrFeNi1.5 Mo0.5Ti0.5在不同pH值的3.5%NaCl酸性溶液中的钝化行为研究[J]. 材料导报, 2021, 35(z2): 399-403.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed