Please wait a minute...
材料导报  2023, Vol. 37 Issue (12): 22010176-10    https://doi.org/10.11896/cldb.22010176
  金属与金属基复合材料 |
大变形热压缩18.7Cr-5.8Mn-1.0Ni-0.23N节镍型双相不锈钢的晶间腐蚀行为研究
刘泽辉1, 杨银辉1,*, 张凤珍2, 王刘行1
1 昆明理工大学材料科学与工程学院,昆明 650093
2 昆明钢铁控股有限公司科技创新部,昆明 650302
Intergranular Corrosion Behavior of 18.7Cr-5.8Mn-1.0Ni-0.23N Economical Duplex Stainless Steel Under Large Deformation Thermal Compression
LIU Zehui1, YANG Yinhui1,*, ZHANG Fengzhen2, WANG Liuhang1
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 Science and Technology Innovation Department of Kunming Iron and Steel Holding Co., Ltd., Kunming 650302, China
下载:  全 文 ( PDF ) ( 30437KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对70%变形量热压缩18.7Cr-5.8Mn-1.0Ni-0.23N节Ni型双相不锈钢,采用双环动电位再活化测试和EIS测试等,研究了在0.1~10 s-1/850~1 150 ℃范围变形参数对双相不锈钢在高低两种浓度H2SO4+NaCl+KSCN溶液中晶间腐蚀行为的影响。结果表明:高溶液浓度增大了晶间敏感值区分度,热变形参数影响两相晶粒细化程度和钝化膜稳定性,导致晶间腐蚀敏感值变化较大。晶间腐蚀主要发生在两相界面处,Cr2O3含量对维持钝化膜稳定起主导作用,耐腐蚀性降低与MnO富集降低钝化膜致密性有关。1 s-1较高温度变形后钢的晶间敏感值低于固溶态,0.1 s-1/1 050 ℃和1 s-1/1 050 ℃变形时,奥氏体相再结晶细化有利于钝化膜稳定性和致密性的增强,增大了耐晶间腐蚀性,铁素体相晶粒细化则有利于自身钝化。相界处钝化元素分布不均匀和高密度位错的形成降低了850 ℃较低温度变形时钢的耐晶间腐蚀性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘泽辉
杨银辉
张凤珍
王刘行
关键词:  节约型  双相不锈钢  再结晶  晶间腐蚀  钝化膜    
Abstract: The effect of deformation parameters in the range of 0.1—10 s-1/850—1 150 ℃ on the IGC resistance of 18.7Cr-5.8Mn-1.0Ni-0.23N economical DSS with 70% deformation hot compression in high and low concentration solutions was studied. The results show that higher solution concentration increased the discrimination of intergranular sensitivity value, and the deformation parameters affect the variation of grain refinement and the stability of passivation film in two phases. The occurrence of IGC mainly locates at the two-phase interfaces, and the Cr2O3 content plays a leading role in maintaining the stability of passive film, but the decrease of corrosion resistance is related to the decrease of the passive film compactness due to the enrichment of MnO content. The IGC sensitivity values after deformation at 1 s-1 and higher temperature are lower than that after solid solution treatment. When deformed at 0.1 s-1/1 050 ℃ and 1 s-1/1 050 ℃, the recrystallization refinement of austenite phase was contributed to enhance the stability and compactness of passive film, and then increase the IGC resistance, while the grain refinement of ferrite phase was conducive to its self-passivation. The passivated elements are not evenly distributed and the formation of high-density dislocations at phase boundaries reduced the IGC resistance when deformed at lower temperature of 850 ℃.
Key words:  economical    duplex stainless steel    recrystallization    intergranular corrosion    the passivation film
出版日期:  2023-06-25      发布日期:  2023-06-20
ZTFLH:  TG142  
基金资助: 国家自然科学基金(51461024;51861019)
通讯作者:  * 杨银辉,昆明理工大学材料科学与工程学院教授、硕士研究生导师。1999年于哈尔滨工业大学理学院电化学工程专业获得学士学位,2008年于昆明理工大学材冶学院材料物化专业获得硕士学位,2011年于同济大学材料科学与工程学院材料学专业获得博士学位。目前主要从事节约型双相不锈钢材料设计、高温相变和强韧化,钢铁材料热变形机理及焊接性,金属材料耐腐蚀等方面的研究。在SCI、EI检索收录论文30余篇。yyhyanr@sina.com   
作者简介:  刘泽辉,2019年7月于烟台大学获得工学学士学位。2019年9月至今为昆明理工大学材料科学与工程学院硕士研究生,在杨银辉教授的指导下进行研究。目前主要研究领域为节约型双相不锈钢的耐蚀性能。
引用本文:    
刘泽辉, 杨银辉, 张凤珍, 王刘行. 大变形热压缩18.7Cr-5.8Mn-1.0Ni-0.23N节镍型双相不锈钢的晶间腐蚀行为研究[J]. 材料导报, 2023, 37(12): 22010176-10.
LIU Zehui, YANG Yinhui, ZHANG Fengzhen, WANG Liuhang. Intergranular Corrosion Behavior of 18.7Cr-5.8Mn-1.0Ni-0.23N Economical Duplex Stainless Steel Under Large Deformation Thermal Compression. Materials Reports, 2023, 37(12): 22010176-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010176  或          http://www.mater-rep.com/CN/Y2023/V37/I12/22010176
1 Toor I U H, Hyun P J, Kwon H S, et al. Corrosion Science, 2008, 50(2), 404.
2 Han D, Jiang Y M, Deng B, et al. Acta Metallurgica Sinica, 2009, 45(8), 919 (in Chinese).
韩冬, 蒋益明, 邓博, 等. 金属学报, 2009, 45(8), 919.
3 Sarlak H, Atapour M, Eamailzadeh M, et al. Materials & Design, 2015, 66(66), 209.
4 Momeni A, Abbasi S M, Shokuhfar A, et al. Journal of Iron and Steel Research International, 2007, 14, 66.
5 Zou D N, Wu K, Han Y, et al. Materials & Design, 2013, 51, 975.
6 Su Y S, Yang Y H, Cao J C, et al. Acta Metallurgica Sinica, 2018, 54(10), 485(in Chinese).
苏煜森, 杨银辉, 曹建春, 等. 金属学报, 2018, 54(10), 485.
7 Li J, Xu Y L, Xiao X S, et al. Materials Science and Engineering A, 2009, 527(1/2), 245.
8 Doherty R D, Hughes D A, Humphreys F J, et al. Materials Science and Engineering, 1997, A238, 219.
9 Hong J, Han D, Tan H, et al. Corrosion Science, 2013, 68, 249.
10 Zhao H, Zhang Z, Zhang H, et al. Journal of Alloys and Compounds, 2016, 672, 147.
11 Qiang S M, Jiang L Z, Li J, et al. Acta Metallurgica Sinica, 2015, 51(11), 1349(in Chinese).
强少明, 江来珠, 李劲, 等. 金属学报, 2015, 51(11), 1349.
12 Luo H, Su H, Ying G, et al. Applied Surface Science, 2017, 425, 628.
13 Mudali U K, Shankar P, Ningshen S, et al. Corrosion Science, 2002, 44(10), 2183.
14 Luo H, Wang X, Dong C, et al. Corrosion Science, 2017, 124 (1), 178.
15 Snir Y, Ben-Hamu G, Eliezer D, et al. Journal of Alloys and Compounds, 2012, 528, 84.
16 De Fenzo A, Scherillo F, Astarita A, et al. Corrosion Science, 2015, 94(may), 79.
17 Tian X, Zheng Y B, et al. Journal of Magnesium and Alloys, 2017, 5(4), 404.
18 Ni K, Yang Y H, Cao J C, et al. Acta Metallurgica Sinica, 2021, 57(2), 224. (in Chinese).
倪珂, 杨银辉, 曹建春, 等. 金属学报, 2021, 57(2), 224.
19 Wu J. Duplex stainless steel, Metallurgical Industry Press, China, 1999, pp. 97 (in Chinese).
吴玖. 双相不锈钢, 冶金工业出版社, 1999, pp. 97.
20 Umemura F, Akashi M, Kawamoto T. Corrosion Engineering, 1980, 29(4), 163.
21 Cao C N. An introduction to electrochemical impedance spectroscopy, Science Press, China, 2002, pp. 34(in Chinese).
曹楚南. 电化学阻抗谱导论, 科学出版社, 2002, pp. 34.
22 Okamoto G, Shibata T, et al. Corrosion Science, 1970, 10(5), 371.
23 Ismail K M, El-Egamy S S, Abdelfatah M et al. Journal of Applied Electrochemistry, 2001, 31(6), 663.
24 Luo H, Dong C F, Xiao K, et al. Applied Surface Science, 2011, 258(1), 631.
25 Sánchcz M, Gregori J, Alonso C, et al. Electrochimica Acta, 2007, 52(27), 7634.
26 Gui ón-Pina V, Igual-Mu oz A, García-Antón J, et al. Corrosion Science, 2011, 53(2), 575.
27 Okamoto G. Corrosion Science, 1973, 13(6), 471.
28 Luo H, Wang X, Dong C, et al. Corrosion Science, 2017, 124 (1), 178.
29 Liu M. Study on corrosion behavior and mechanism of high strength corrosion resistant low alloy rebar in marine environment. Ph. D Thesis, University of Science and Technology Beijing, China, 2017 (in Chinese).
刘明. 海洋环境下高强耐蚀低合金钢筋的腐蚀行为与机理研究. 博士学位论文, 北京科技大学, 2017.
30 Freire L, Catarino M A, Godinho M I, et al. Cement and Concrete Composites, 2012, 34(9), 1075.
31 Faichuk M G, Ramamurthy S, Lau W M, et al. Corrosion Science, 2011, 53(4), 1383.
32 Zhu X M, Liu M, Zhang Y S, et al. Corrosion Engineering, Science and Technology, 2007, 42(1), 22.
33 Grabke H J et al. ISIJ International, 1996, 36(7), 777.
34 Deng B, Jiang Y M, Gao J, et al. Journal of Alloys and Compounds, 2010, 493(1-2), 461.
35 Cai X. Fundamentals of materials science and engineering, Shanghai Jiaotong University Press, China, 2010, pp. 54(in Chinese).
蔡珣. 材料科学与工程基础, 上海交通大学出版社, 2010, pp. 54.
36 Shi J H, Wu B L, Liu G, et al. Materials Protection, 2008, 41(5), 26. (in Chinese).
石继红, 武保林, 刘刚, 等. 材料保护, 2008, 41(5), 26.
[1] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[2] 欧阳祚琼, 罗兵辉, 邓攀, 莫文锋, 柏振海. 终轧温度对2024铝合金晶间腐蚀和力学性能的影响[J]. 材料导报, 2023, 37(11): 21110100-7.
[3] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[4] 李朝阳, 黄光杰, 曹玲飞, 曹宇, 林林. 升温速率对AA2060铝锂合金中间形变热处理微观组织的影响[J]. 材料导报, 2022, 36(7): 21020008-7.
[5] 张鸿飞, 丁雨田, 雷健, 沈悦, 陈建军, 高钰璧. 中低温挤压Mg-1.5Zn-0.2Ca合金组织与性能研究[J]. 材料导报, 2022, 36(3): 20120264-5.
[6] 邓丽莎, 何陈强, 杨宏, 甘勇, 陈冷. 偏析法制备高纯电子铝箔的再结晶织构演变[J]. 材料导报, 2022, 36(21): 21040243-6.
[7] 卢博, 李安敏, 饶宇, 汪林忠, 左天辰, 胡杨. 稀土Y及热处理对6016铝合金组织与性能的影响[J]. 材料导报, 2022, 36(19): 21070110-8.
[8] 孙建, 黄贞益, 李景辉, 王萍, 吴旭明. 基于加工硬化率的新型轻质钢动态再结晶临界条件及变形机制研究[J]. 材料导报, 2022, 36(19): 21050251-9.
[9] 万里, 张奇, 张勇, 唐建国, 邓运来. Cr和Mn对汽车用铝合金型材压溃性能的影响[J]. 材料导报, 2022, 36(18): 20110147-4.
[10] 于娟, 李国爱, 冯朝辉, 陈军洲, 赵唯一. 中间形变热处理对铝锂合金短横向拉伸性能的影响[J]. 材料导报, 2022, 36(18): 20060118-5.
[11] 郑亚亚, 罗兵辉, 汪力, 谢炜. Ag含量对Al-Mg-Si 合金时效析出行为及性能的影响[J]. 材料导报, 2022, 36(13): 20120268-5.
[12] 李艳, 周增林, 何学良, 陈文帅, 惠志林. 轧制钼材制备过程织构演变的研究现状[J]. 材料导报, 2022, 36(12): 20090340-6.
[13] 田永强, 苑清英, 付安庆, 何石磊, 周新义, 汪强, 杨晓龙, 陈浩明. Co1.5CrFeNi1.5 Mo0.5Ti0.5在不同pH值的3.5%NaCl酸性溶液中的钝化行为研究[J]. 材料导报, 2021, 35(z2): 399-403.
[14] 袁傲明, 任学平. 固溶时效对1Cr21Ni5Ti双相不锈钢组织的影响[J]. 材料导报, 2021, 35(Z1): 443-446.
[15] 肖奇, 孙文磊, 刘金朵, 黄海博. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed