Intergranular Corrosion Behavior of 18.7Cr-5.8Mn-1.0Ni-0.23N Economical Duplex Stainless Steel Under Large Deformation Thermal Compression
LIU Zehui1, YANG Yinhui1,*, ZHANG Fengzhen2, WANG Liuhang1
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China 2 Science and Technology Innovation Department of Kunming Iron and Steel Holding Co., Ltd., Kunming 650302, China
Abstract: The effect of deformation parameters in the range of 0.1—10 s-1/850—1 150 ℃ on the IGC resistance of 18.7Cr-5.8Mn-1.0Ni-0.23N economical DSS with 70% deformation hot compression in high and low concentration solutions was studied. The results show that higher solution concentration increased the discrimination of intergranular sensitivity value, and the deformation parameters affect the variation of grain refinement and the stability of passivation film in two phases. The occurrence of IGC mainly locates at the two-phase interfaces, and the Cr2O3 content plays a leading role in maintaining the stability of passive film, but the decrease of corrosion resistance is related to the decrease of the passive film compactness due to the enrichment of MnO content. The IGC sensitivity values after deformation at 1 s-1 and higher temperature are lower than that after solid solution treatment. When deformed at 0.1 s-1/1 050 ℃ and 1 s-1/1 050 ℃, the recrystallization refinement of austenite phase was contributed to enhance the stability and compactness of passive film, and then increase the IGC resistance, while the grain refinement of ferrite phase was conducive to its self-passivation. The passivated elements are not evenly distributed and the formation of high-density dislocations at phase boundaries reduced the IGC resistance when deformed at lower temperature of 850 ℃.
1 Toor I U H, Hyun P J, Kwon H S, et al. Corrosion Science, 2008, 50(2), 404. 2 Han D, Jiang Y M, Deng B, et al. Acta Metallurgica Sinica, 2009, 45(8), 919 (in Chinese). 韩冬, 蒋益明, 邓博, 等. 金属学报, 2009, 45(8), 919. 3 Sarlak H, Atapour M, Eamailzadeh M, et al. Materials & Design, 2015, 66(66), 209. 4 Momeni A, Abbasi S M, Shokuhfar A, et al. Journal of Iron and Steel Research International, 2007, 14, 66. 5 Zou D N, Wu K, Han Y, et al. Materials & Design, 2013, 51, 975. 6 Su Y S, Yang Y H, Cao J C, et al. Acta Metallurgica Sinica, 2018, 54(10), 485(in Chinese). 苏煜森, 杨银辉, 曹建春, 等. 金属学报, 2018, 54(10), 485. 7 Li J, Xu Y L, Xiao X S, et al. Materials Science and Engineering A, 2009, 527(1/2), 245. 8 Doherty R D, Hughes D A, Humphreys F J, et al. Materials Science and Engineering, 1997, A238, 219. 9 Hong J, Han D, Tan H, et al. Corrosion Science, 2013, 68, 249. 10 Zhao H, Zhang Z, Zhang H, et al. Journal of Alloys and Compounds, 2016, 672, 147. 11 Qiang S M, Jiang L Z, Li J, et al. Acta Metallurgica Sinica, 2015, 51(11), 1349(in Chinese). 强少明, 江来珠, 李劲, 等. 金属学报, 2015, 51(11), 1349. 12 Luo H, Su H, Ying G, et al. Applied Surface Science, 2017, 425, 628. 13 Mudali U K, Shankar P, Ningshen S, et al. Corrosion Science, 2002, 44(10), 2183. 14 Luo H, Wang X, Dong C, et al. Corrosion Science, 2017, 124 (1), 178. 15 Snir Y, Ben-Hamu G, Eliezer D, et al. Journal of Alloys and Compounds, 2012, 528, 84. 16 De Fenzo A, Scherillo F, Astarita A, et al. Corrosion Science, 2015, 94(may), 79. 17 Tian X, Zheng Y B, et al. Journal of Magnesium and Alloys, 2017, 5(4), 404. 18 Ni K, Yang Y H, Cao J C, et al. Acta Metallurgica Sinica, 2021, 57(2), 224. (in Chinese). 倪珂, 杨银辉, 曹建春, 等. 金属学报, 2021, 57(2), 224. 19 Wu J. Duplex stainless steel, Metallurgical Industry Press, China, 1999, pp. 97 (in Chinese). 吴玖. 双相不锈钢, 冶金工业出版社, 1999, pp. 97. 20 Umemura F, Akashi M, Kawamoto T. Corrosion Engineering, 1980, 29(4), 163. 21 Cao C N. An introduction to electrochemical impedance spectroscopy, Science Press, China, 2002, pp. 34(in Chinese). 曹楚南. 电化学阻抗谱导论, 科学出版社, 2002, pp. 34. 22 Okamoto G, Shibata T, et al. Corrosion Science, 1970, 10(5), 371. 23 Ismail K M, El-Egamy S S, Abdelfatah M et al. Journal of Applied Electrochemistry, 2001, 31(6), 663. 24 Luo H, Dong C F, Xiao K, et al. Applied Surface Science, 2011, 258(1), 631. 25 Sánchcz M, Gregori J, Alonso C, et al. Electrochimica Acta, 2007, 52(27), 7634. 26 Gui ón-Pina V, Igual-Mu oz A, García-Antón J, et al. Corrosion Science, 2011, 53(2), 575. 27 Okamoto G. Corrosion Science, 1973, 13(6), 471. 28 Luo H, Wang X, Dong C, et al. Corrosion Science, 2017, 124 (1), 178. 29 Liu M. Study on corrosion behavior and mechanism of high strength corrosion resistant low alloy rebar in marine environment. Ph. D Thesis, University of Science and Technology Beijing, China, 2017 (in Chinese). 刘明. 海洋环境下高强耐蚀低合金钢筋的腐蚀行为与机理研究. 博士学位论文, 北京科技大学, 2017. 30 Freire L, Catarino M A, Godinho M I, et al. Cement and Concrete Composites, 2012, 34(9), 1075. 31 Faichuk M G, Ramamurthy S, Lau W M, et al. Corrosion Science, 2011, 53(4), 1383. 32 Zhu X M, Liu M, Zhang Y S, et al. Corrosion Engineering, Science and Technology, 2007, 42(1), 22. 33 Grabke H J et al. ISIJ International, 1996, 36(7), 777. 34 Deng B, Jiang Y M, Gao J, et al. Journal of Alloys and Compounds, 2010, 493(1-2), 461. 35 Cai X. Fundamentals of materials science and engineering, Shanghai Jiaotong University Press, China, 2010, pp. 54(in Chinese). 蔡珣. 材料科学与工程基础, 上海交通大学出版社, 2010, pp. 54. 36 Shi J H, Wu B L, Liu G, et al. Materials Protection, 2008, 41(5), 26. (in Chinese). 石继红, 武保林, 刘刚, 等. 材料保护, 2008, 41(5), 26.