Please wait a minute...
材料导报  2022, Vol. 36 Issue (13): 20120268-5    https://doi.org/10.11896/cldb.20120268
  金属与金属基复合材料 |
Ag含量对Al-Mg-Si 合金时效析出行为及性能的影响
郑亚亚1,2,3,*, 罗兵辉2, 汪力1, 谢炜3
1 湖南人文科技学院能源与机电工程学院,湖南 娄底 417000
2 中南大学材料科学与工程学院,长沙 410083
3 长沙理工大学工程车辆安全性设计与可靠性技术重点实验室,长沙 410114
Effects of Ag Addition on the Precipitation Hardening Behaviour and Properties of Al-Mg-Si Alloys
ZHENG Yaya1,2,3,*, LUO Binghui2, WANG Li1, XIE Wei3
1 College of Energy and Electromechanical Engineering, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan,China
2 College of Materials Science and Engineering, Central South University, Changsha 410083, China
3 Key Laboratory of Safety Design and Reliability Technology for Engineering Vehicle, Changsha University of Science and Technology, Changsha 410114, China
下载:  全 文 ( PDF ) ( 11934KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)、差热扫描热量法(DSC)和维氏硬度等手段研究了Ag含量对Al-Mg-Si合金组织、抗晶间腐蚀(IGC)性能、时效硬化和析出动力学过程的影响。结果表明: 峰时效状态下,晶内主要强化相为β″相,晶界为β′相,同时晶界和晶内均存在少量的Al-Fe-Si(Mn)弥散相。随着Ag含量的增大,合金的峰值硬度提高,时效硬化速率增大。未添加Ag的合金晶界β′密度较大,腐蚀类型表现为晶间腐蚀和局部腐蚀;添加0.2% (质量分数,下同)Ag合金的晶界β′相连续程度较低,表现为轻微的IGC;过量Ag的添加导致晶界析出相连续程度提高,腐蚀敏感性增加。Ag的添加可降低MgSi原子团簇与Al基体界面的应变强度,促进团簇和β″的析出,降低了β″相的析出激活能,加快了Al-Mg-Si合金时效析出响应,提高了β″相的热力学稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑亚亚
罗兵辉
汪力
谢炜
关键词:  Al-Mg-Si  Ag  晶间腐蚀  β″相  析出动力学    
Abstract: The effects of Ag content on microstructures, intergranular corrosion (IGC), age hardening and precipitation kinetics of Al-Mg-Si alloys were investigated by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), differential scanning calorimetry (DSC) and Vickers hardness test. The results show that at the peak-ageing state, the main strengthening phase is β″ phase in the grain and β′ phase on the grain boundary, while there is a small amount of Al-Fe-Si-(Mn) dispersoid in both grain boundaries and grains. With the increase of Ag content, the peak hardness and age hardening rate increase. Without Ag addition, the density of β′ phase on the grain boundary of the alloy is high, and the corrosion types of the alloy are IGC and local corrosion. The alloy with 0.2% (mass fraction, the same below) Ag has grain boundary β′ phase of low continuity, and shows slight IGC. The addition of excessive Ag leads to the increase of continuity of grain boundary precipitates, and the increase of corrosion sensitivity. The addition of Ag can decrease the strain strength at the interface between MgSi clusters and Al matrix, promote the precipitation of clusters and β″ phase, decrease the precipitation activation energy of β″ phase, significantly accelerate the aging precipitation response of the Al-Mg-Si alloy, and improve the thermodynamic stability of β″ phase.
Key words:  Al-Mg-Si    Ag    intergranular corrosion    β″ phase    precipitation kinetics
出版日期:  2022-07-10      发布日期:  2022-07-12
ZTFLH:  TG146  
通讯作者:  * yayazhengcsu@163.com   
作者简介:  郑亚亚,2020年毕业于中南大学,获材料学博士学位。目前就职于湖南人文科技学院,主要从事铝合金成分设计及组织控制方面的研究,发表论文10余篇,授权发明专利3项。
引用本文:    
郑亚亚, 罗兵辉, 汪力, 谢炜. Ag含量对Al-Mg-Si 合金时效析出行为及性能的影响[J]. 材料导报, 2022, 36(13): 20120268-5.
ZHENG Yaya, LUO Binghui, WANG Li, XIE Wei. Effects of Ag Addition on the Precipitation Hardening Behaviour and Properties of Al-Mg-Si Alloys. Materials Reports, 2022, 36(13): 20120268-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120268  或          http://www.mater-rep.com/CN/Y2022/V36/I13/20120268
1 Syrigou M S, Dow R S. Designated Structural Engineer, 2018, 166(1), 128.
2 Cerik B C. Thin-walled Structures, 2017, 110(6), 123.
3 Chen J H, Liu C H. The Chinese Journal of Nonferrous Metals, 2011, 21 (10), 2352 (in Chinese).
陈江华, 刘春辉.中国有色金属学报, 2011, 21 (10), 2352.
4 Bjørge R, Dwyer C, Weyland M, et al. Acta Materialia, 2012, 60(6-7), 3239.
5 Zhao Q, Qian Z, Cui X, et al. Journal of Alloys and Compounds, 2016, 666(5), 50.
6 Saito T, Marioara C D, Andersen S J. Philosophical Magazine, 2013, 94(5), 520.
7 Li J F, Chen Y L, Zhang X F, et al. Journal of Central South University, 2017,48(11),2866 (in Chinese).
李劲风, 陈永来, 张绪虎, 等. 中南大学学报, 2017,48(11), 2866.
8 Fan X, He Z, Zhou W, et al. Journal of Materials Processing Technology, 2016, 226(2), 179.
9 Li H, Pan D Z, Wang Z X, et al. Acta Metallurgica Sinica, 2010, 46 (4),494 (in Chinese).
李海, 潘道召, 王芝秀, 等.金属学报, 2010, 46 (4), 494.
10 Weng Y Y, Jia Z h, Ding L P, et al. Progress in Natural Science: Mate-rials International, 2018, 29(3), 363.
11 Marioara C D, Andersen S J, Jansen J, et al. Acta Materialia, 2001, 49(2), 321.
12 Guo M X, Zhang Y D, Li G J, et al. Journal of Alloys and Compounds, 2019,774, 347.
13 Yuan W, Liang Z. Materials & Design, 2011,32,4195.
14 Ding L, Jia Z, Nie J, et al. Acta Materialia, 2018, 145(15), 437.
15 Marioara C D, Andersen S J, Jansen J, et al. Acta Materialia, 2003, 51(7), 789.
16 Nakamura J, Matsuda K, Kawabata T, et al. Materials Transactions, 2010, 51(2), 310.
17 Zheng Y Y, Luo B, Bai Z, et al. Metals, 2017,7(10), 387.
18 He C, Luo B H, Zheng Y Y, et al. Materials Characterization, 2019, 156, 109836.
19 Chen J H, Costan E, Huis M A V, et al. Science, 2006, 312 (5772),416.
20 Li C, Sun J, Li Z, et al. Materials Characterization, 2016, 122(12), 142.
21 Mørtsell E V A, Marioara C D, Andersen S J, et al. Metallurgical and Materials Transactions A, 2015, 46(6), 4369.
22 Liu M, Wu Z, Yang R, et al. Progress in Natural Science: Materials International, 2015, 25(2), 153.
23 Eivani A R, Taheri A K. Journal of Materials Science and Technology, 2008, 5(1-3),388.
[1] 马超, 余飞, 孙翼飞, 袁欢, 徐明. 具有高催化活性的Ag复合Sm∶ZnO纳米复合材料的制备、表征以及光催化机理研究[J]. 材料导报, 2022, 36(8): 21010244-8.
[2] 县涛, 高宇姝, 孙小锋, 邸丽景, 马俊, 周永杰. 修饰AuAg合金纳米颗粒对BiOBr纳米片光催化降解和还原性能的提高[J]. 材料导报, 2022, 36(13): 21010273-8.
[3] 杨佳行, 韩永典, 徐连勇. 瞬态电流键合对Sn-Ag-Cu钎料焊点界面反应的影响[J]. 材料导报, 2022, 36(1): 20100132-5.
[4] 浦娟, 薛松柏, 张雷, 吴铭方, 龙伟民, 王水庆, 钱似舰, 林铁松. CeO2对Ag30CuZnSn药芯银钎料润湿性能及钎焊接头组织与性能的影响[J]. 材料导报, 2021, 35(8): 8134-8139.
[5] 关海昆, 李全安, 陈晓亚, 张帅, 王颂博. Mg-11Gd-2Y-1.5Ag-0.5Zr合金的高温蠕变行为[J]. 材料导报, 2021, 35(6): 6126-6130.
[6] 李靖, 罗凯怡, 胡文宇, 刘禹彤, 袁欢, 张秋平, 王笑乙, 徐明. 高效Mn/ZnO-Ag纳米复合光催化体系的简易制备及研究[J]. 材料导报, 2021, 35(4): 4017-4022.
[7] 苏粤兰, 罗兵辉, 柏振海, 莫文锋, 何川. Al-Mg-Si-In合金的热变形行为和热轧工艺[J]. 材料导报, 2021, 35(20): 20137-20142.
[8] 吴方棣, 胡家朋, 杨自涛, 郑辉东. Ag-O-N共掺杂闪锌矿ZnS光催化性质的第一性原理研究[J]. 材料导报, 2021, 35(18): 18012-18017.
[9] 于洋, 朱鸣, 陈叔平, 古纯霖, 张波, 黄宇巍. 除氢材料在高真空多层绝热设备中维持高真空行为研究[J]. 材料导报, 2021, 35(14): 14035-14039.
[10] 屈华, 徐巧至, 刘伟东, 齐健学, 娄琦, 蒋新宇. Al-Cu-Mg-Ag合金Ω相价电子结构与沉淀硬化能力的关系[J]. 材料导报, 2021, 35(12): 12110-12113.
[11] 周蕊, 刘众旺, 张建国, 刘兵飞, 杜春志. 基于DPC-CZM混合模型的金属粉末压坯裂纹三维数值模拟[J]. 材料导报, 2020, 34(6): 6151-6155.
[12] 罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明. Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究[J]. 材料导报, 2020, 34(4): 4013-4019.
[13] 乔帅, 赵朝成, 贺凤婷, 赵洪飞, 董培, 林飞飞, 台兆鑫. 原位沉积法制备g-C3N4/Ag3PO4复合光催化剂降解卡马西平的性能研究[J]. 材料导报, 2020, 34(19): 19010-19017.
[14] 曹勇, 焦增凯, Sultan Alzoabi, 周生刚. 新型节能Pb(1%Ag)/Al层状复合阳极电化学分析和电位分布模拟[J]. 材料导报, 2020, 34(18): 18014-18018.
[15] 胡文宇, 王笑乙, 袁欢, 刘禹彤, 陈雨, 张秋平, 张嘉羲, 罗凯怡, 李靖, 徐明. Ag沉积CuO-ZnO纳米复合材料的溶胶-凝胶合成及光催化性能研究[J]. 材料导报, 2020, 34(10): 10018-10023.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed