Please wait a minute...
材料导报  2021, Vol. 35 Issue (20): 20137-20142    https://doi.org/10.11896/cldb.20090118
  金属与金属基复合材料 |
Al-Mg-Si-In合金的热变形行为和热轧工艺
苏粤兰, 罗兵辉, 柏振海, 莫文锋, 何川
中南大学材料科学与工程学院,长沙 410083
Hot Deformation Behavior and Hot-rolling Process of Al-Mg-Si-In Alloy
SU Yuelan, LUO Binghui, BAI Zhenhai, MO Wenfeng, HE Chuan
School of Materials Science and Engineering, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 6275KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用Gleeble-3500型热模拟试验机对Al-Mg-Si-In合金进行热压缩实验,温度范围为350~500 ℃,应变速率范围为0.001~1 s-1,分析变形温度、变形速率对该合金热变形过程中流变应力的影响,并建立了合金的本构方程和热加工图,结合金相显微镜对热压缩变形的组织进行研究。测试结果表明:随着变形温度的降低或应变速率的加快,流变应力和峰值应力升高,合金的动态软化机制以动态回复为主,难以发生动态再结晶;合金的热压缩变形流变应力行为可用双曲正弦形式的本构方程来描述,其变形激活能为180.84 kJ/mol;在应变为0.2时,该合金的合适加工区域是470~500 ℃、0.001~0.01 s-1和350~375 ℃、0.1~1 s-1,失稳区是 350~360 ℃、0.001~0.01 s-1;在应变为0.8时,该合金的合适加工区域是350~360 ℃、0.1~1 s-1,390~480 ℃、0.001~0.01 s-1,480~500 ℃、0.1~1 s-1,失稳区是350~360 ℃、0.001~0.01 s-1,490~500 ℃、0.001~0.01 s-1,390~425 ℃、0.1~1 s-1。该合金在应变为0.8时的合适加工区域的等轴晶粒较多,且晶粒较细小,失稳区域则反之。实际加工的热轧工艺制度为480 ℃、0.51 s-1,轧制效果良好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏粤兰
罗兵辉
柏振海
莫文锋
何川
关键词:  Al-Mg-Si-In合金  本构方程  热加工图  热轧工艺    
Abstract: Al-Mg-Si-In alloy was subjected to thermal compression experiment using Gleeble-3500 thermal simulation testing machine, the temperature range was 350—500 ℃, and the strain rate range was 0.001—1 s-1. The effects of deformation temperature and deformation rate on rheological stress during thermal deformation of the alloy were analyzed, and the constitutive equation and thermal processing diagram of the alloy were established. The microstructure of thermal compression deformation was studied with metallographic microscope. The test results show that with the decrease of deformation temperature or the increase of strain rate, the flow stress and peak stress increase, and the dynamic softening mechanism of the alloy is mainly dynamic recovery, which is difficult to occur dynamic recrystallization. The thermal compression deformation rheological stress behavior of the alloy can be described by a hyperbolic sine constitutive equation, and its deformation activation energy is 180.84 kJ/mol. When the strain is 0.2, the suitable processing area of the alloy is 470—500 ℃, 0.001—0.01 s-1 and 350—375 ℃, 0.1—1 s-1, instability region is 350—360 ℃, 0.001—0.01 s-1. When the strain is 0.8, the suitable processing area of the alloy is 350—360 ℃, 0.1—1 s-1; 390—480 ℃, 0.001—0.01 s-1; 480—500 ℃, 0.1—1 s-1. The instability region is 350—360 ℃, 0.001—0.01 s-1; 490—500 ℃, 0.001—0.01 s-1; 390—425 ℃, 0.1~1 s-1. When the strain of the alloy is 0.8, there are more equiaxed grains in the suitable processing region, and the grains are smaller, while the unstable region is opposite. The effect of actual hot-rolling process 480 ℃, 0.51 s-1, and the rolling effect is well.
Key words:  Al-Mg-Si-In alloy    constitutive equation    hot working drawing    hot-rolling process
               出版日期:  2021-10-25      发布日期:  2021-11-12
ZTFLH:  TG146.2  
基金资助: 中国国防科技工业局项目(2011-006)
通讯作者:  lbh@csu.edu.cn   
作者简介:  苏粤兰,硕士研究生,现就读于中南大学材料科学与工程学院,主要从事Al-Mg-Si合金组织及性能的研究。
罗兵辉,中南大学教授,博士研究生导师,主要从事先进金属结构-功能材料理论研究及材料研制开发,以第一作者或通讯作者或研究生导师身份在在国内外知名学术刊物上发表论文80余篇,其中多篇被多国知名材料科学学者引用。
引用本文:    
苏粤兰, 罗兵辉, 柏振海, 莫文锋, 何川. Al-Mg-Si-In合金的热变形行为和热轧工艺[J]. 材料导报, 2021, 35(20): 20137-20142.
SU Yuelan, LUO Binghui, BAI Zhenhai, MO Wenfeng, HE Chuan. Hot Deformation Behavior and Hot-rolling Process of Al-Mg-Si-In Alloy. Materials Reports, 2021, 35(20): 20137-20142.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090118  或          http://www.mater-rep.com/CN/Y2021/V35/I20/20137
1 Chen S F, Li D Y, Zhang S, et al. International Journal of Plasticity,2020,131,102710.
2 Zhang H, Li L X, Deng Y A. Materials Characterization,2007,58(2),168.
3 Li M, Li H, Xu Y Y, et al. Journal of Material Heat Treatment,2019,40(10),143(in Chinese).
李明,李亨,徐圆义,等.材料热处理学报,2019,40(10),143.
4 Steven B, Mahendra R, Lu J, et al. Materials Science & Engineering A,2020,793,139873.
5 Wang J, Luo B H, Bai Z H, et al. Chinese Journal of Rare Metals,2018,42(7),681(in Chinese).
汪娟,罗兵辉,柏振海,等.稀有金属,2018,42(7),681.
6 Wan F, Yun X B, Bi S, et al. Chinese Journal of Nonferrous Metals,2018,28(5),888(in Chinese).
万帆,运新兵,毕胜,等.中国有色金属学报,2018,28(5),888.
7 Shen J. Chinese Journal of Rare Metals,1998,22(1),47(in Chinese).
沈健.稀有金属,1998,22(1),47.
8 Chen X H, Fan C H, Hu Z Y, et al. Transactions of Nonferrous Metals Society of China,2018,28(12),2401.
9 Imbert C A C, Mcqueen H J. Materials Science and Engineering A,2001,313(1-2),88.
10 Kumar P V, Reddy G M, Rao K S. Defense Technology,2015,11(2),166.
11 Zener C, Hollomon J H. Journal of Applied Physics,1944,15(1),22.
12 Sun Y, Hu L X, Ren J S. Materials Characterization,2015,100(2),163.
13 Mcqueen H J, Celliers O C. Canadian Metallurgical,1997,36,73.
14 Mcqueen H J, Ryan N D. Materials Science and Engineering A,2002,322,43.
15 Cheng T. Effect of Sn and In on natural aging and artificial aging of Al-Mg-Si Alloy. Master’s Thesis, Chongqing University, China,2018(in Chinese).
程韬.Sn和In对Al-Mg-Si合金自然时效和人工时效的影响.硕士学位论文,重庆大学,2018.
16 Qiao B, Zhan Z S, Zhang D F, et al. Hot Working Technology,2019,48(21),112(in Chinese).
乔波,战中学,张登峰,等.热加工工艺,2019,48(21),112.
17 Li B Q, Pan L, Yin Z M. Materials Science and Engineering A,2014,614(1),199.
18 Xiong S W, Pan Q L, Zhang H, et al. Chinese Journal of Nonferrous Metals,2018,28(5),863(in Chinese).
熊尚武,潘清林,张豪,等.中国有色金属学报,2018,28(5),863.
[1] 梅金娜, 薛飞, 吴天栋, 卫娜, 蔡振. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(Z1): 336-341.
[2] 王颂博, 李全安, 陈晓亚, 朱利敏, 张帅, 关海昆. Zn对Mg-11Gd-3Y-0.5Zr合金热压缩行为的影响[J]. 材料导报, 2021, 35(4): 4124-4128.
[3] 易宗鑫, 李小强, 潘存良, 沈正章. 等轴细晶TC4钛合金应变补偿本构关系及热加工图的研究[J]. 材料导报, 2021, 35(18): 18146-18152.
[4] 何春雨, 余伟, 程知松, 王铭阳, 唐荻. 高强耐蚀车体用钢热变形行为及本构方程的研究[J]. 材料导报, 2021, 35(18): 18153-18162.
[5] 曾泽瑶, 杨银辉, 曹建春, 倪珂, 潘晓宇. 18Cr-3Mn-1Ni-0.22N节镍型双相不锈钢热压缩再结晶行为研究[J]. 材料导报, 2021, 35(18): 18163-18169.
[6] 任军帅, 李欣琳, 肖松涛, 周立鹏, 舒滢, 张英明. 新型Ti-Al-Zr-Nb-Mo-Si钛合金热变形行为及基于BP神经网络模型的本构关系研究[J]. 材料导报, 2020, 34(Z1): 283-288.
[7] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[8] 仇鹏, 王家毅, 段晓鸽, 蔺宏涛, 陈康, 江海涛. AA7021铝合金热变形行为及微观组织演变机理的研究[J]. 材料导报, 2020, 34(8): 8106-8112.
[9] 吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
[10] 罗锐, 陈乐利, 曹赟, 周皓天, 崔树刚, 韩敏, 裴昌磊, 程晓农, 高佩. 铬钼高温铁素体钢的形变特性与动态再结晶模型[J]. 材料导报, 2020, 34(20): 20118-20122.
[11] 刘松浩, 司家勇, 陈龙, 徐梦杰. FGH4096合金含高应变速率的流变行为和热加工图构建[J]. 材料导报, 2020, 34(20): 20123-20129.
[12] 王颂博, 李全安, 陈晓亚, 朱利敏, 张帅, 关海昆. Mg-11Gd-3Y-1.1Zn-0.5Zr的高温热压缩行为及热加工图[J]. 材料导报, 2020, 34(18): 18104-18108.
[13] 胡余生, 冯迪, 周建党, 朱田, 张豪, 张捷, 范曦, 宋飞刀. 喷射成形AlSi25Cu4Mg耐磨合金的本构方程及热加工图[J]. 材料导报, 2020, 34(10): 10120-10125.
[14] 高志玉, 盛凯, 康宇, 张旭, 潘涛. 一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析[J]. 材料导报, 2019, 33(4): 694-698.
[15] 夏雨, 王快社, 胡平, 胡卜亮, 李世磊, 陈文静, 周宇航, 冯鹏发. 纯钼金属高温塑性变形行为研究进展[J]. 材料导报, 2019, 33(19): 3277-3289.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed