Please wait a minute...
材料导报  2021, Vol. 35 Issue (18): 18146-18152    https://doi.org/10.11896/cldb.20070109
  金属与金属基复合材料 |
等轴细晶TC4钛合金应变补偿本构关系及热加工图的研究
易宗鑫1, 李小强1, 潘存良1, 沈正章2
1 华南理工大学国家金属材料近净成形工程技术研究中心,广州 510640
2 航天材料及工艺研究所,北京100076
Research on Strain Compensation Constitutive Equation and Hot Processing Map of Equiaxed Fine Grain TC4 Alloy
YI Zongxin1, LI Xiaoqiang1, PAN Cunliang1, SHEN Zhengzhang2
1 National Engineering Research Center for Near-Net-Shape for Metallic Materials, South China University of Technology, Guangzhou 510640, China
2 Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China
下载:  全 文 ( PDF ) ( 18989KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作对等轴细晶TC4钛合金进行了热压缩实验,研究了变形温度为800~950 ℃、应变速率为0.01~10 s-1下TC4钛合金的变形行为,并建立相应的Arrhenius型本构方程和热加工图,再基于实验获得的真应力应变曲线对本构方程进行应变补偿修正。结果表明:合金的真应力值随温度升高、应变速率下降而减小;修正后本构方程真应力预测值与实验值相关系数R为0.985,相对误差ARRE为6.8%。结合热加工图和相应区域的电子背散射衍射(EBSD)分析可知:失稳区的温度为875~950 ℃,应变速率为0.3~10 s-1,组织特征表现为长条状晶粒;最适宜加工区的温度为800~875 ℃,应变速率为0.01~0.3 s-1,组织特征表现为等轴细晶。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
易宗鑫
李小强
潘存良
沈正章
关键词:  等轴细晶  TC4钛合金  本构方程  应变补偿修正  热加工图    
Abstract: The deformation behavior of equiaxed fine grain TC4 alloy under deformation temperature of 800—950 ℃ and strain rate of 0.01—10 s-1 was studied by hot compression experiment, and the Arrhenius constitutive equation and hot processing map were established. Based on the true stress-strain curves obtained by experiment, the strain compensation is modified to the constitutive equation. The results show that the true stress decreases with the increase of temperature and the decrease of strain rate. The correlation coefficient between the predicted true stress and the experimental value R is 0.985, and the relative error ARRE is 6.8%. Combined with the hot processing map and the electron backscatter diffraction (EBSD) analysis of the corresponding region, it can be seen that the temperature in the instability zone is between 875—950 ℃, the strain rate is between 0.3—10 s-1, and the microstructure features are long strip grains. The optimum temperature in the processing area is between 800—875 ℃, the strain rate is between 0.01—0.3 s-1, and the microstructure is equiaxed fine grain.
Key words:  equiaxed fine grain    TC4 titanium alloy    constitutive equation    strain compensation correction    hot processing map
               出版日期:  2021-09-25      发布日期:  2021-09-30
ZTFLH:  TG146.2  
基金资助: 国防基础科研计划项目(JCKY2018203C031)
作者简介:  易宗鑫,华南理工大学机械与汽车工程学院硕士研究生。主要从事材料成型数值仿真的研究。参与国防基础科研项目1项。
李小强,华南理工大学教授,博士研究生导师。主要从事材料加工方面的研究。获广东省科学技术一等奖1项,教育部提名国家科技进步二等奖1项。在学术期刊上累计发表论文153篇。
引用本文:    
易宗鑫, 李小强, 潘存良, 沈正章. 等轴细晶TC4钛合金应变补偿本构关系及热加工图的研究[J]. 材料导报, 2021, 35(18): 18146-18152.
YI Zongxin, LI Xiaoqiang, PAN Cunliang, SHEN Zhengzhang. Research on Strain Compensation Constitutive Equation and Hot Processing Map of Equiaxed Fine Grain TC4 Alloy. Materials Reports, 2021, 35(18): 18146-18152.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070109  或          http://www.mater-rep.com/CN/Y2021/V35/I18/18146
1 Li Y F, Zeng X G.The Chinese Journal of Nonferrous Metals, 2019, 29(5), 972 (in Chinese).
   李云飞,曾祥国. 中国有色金属学报, 2019, 29(5),972.
2 Zhang T Y, Liu Y, Liu B. Materials Science and Engineering of Powder Metallurgy, 2014, 19(2),184 (in Chinese).
张拓阳, 刘咏, 刘彬.粉末冶金材料科学与工程, 2014, 19(2),184.
3 Xu F, Yan Y B. Titanium Industry Progress, 2012, 29(2),15(in Chinese).
徐烽, 颜银标. 钛工业进展, 2012, 29(2), 15.
4 Xu Y, Yang X J, Du D N, et al.Special Casting & Nonferrous Alloys, 2017, 37(7),697(in Chinese).
徐勇, 杨湘杰, 杜丹妮, 等.特种铸造及有色合金, 2017, 37(7),697.
5 Wang B, Zeng W D, Peng W W.Titanium Industry Progress, 2014, 31(5),14(in Chinese).
汪波, 曾卫东, 彭雯雯. 钛工业进展, 2014, 31(5),14.
6 Zheng M Q, Wang G C, Yu M Z, et al.Journal of Materials Engineering, 2014,8, 32.
7 Zhong M C, Hong C J, Wei C P, et al.Results in Physics, 2019, 15,102633.
8 Aneta ukaszek-Soek, TomaszS'leboda, Janusz Krawczyk, et al. Journal of Alloys and Compounds, 2019, 10(797),174.
9 Seshacharyulu T, Medeiros S C, Frazier W G,et al. Materials Science and Engineering, 2000, 284,184.
10 Xiao J, Li D S, Li X Q, et al.Journal of Alloys and Compounds, 2012,15(541), 346.
11 Tao Z J, Yang H, Li H, et al. Rare Metals, 2016, 35(2), 162.
12 Zhang X L, Li F G, Peng F H, et al.Journal of Aeronautical Materials, 2007, 27(5), 40(in Chinese).
张晓露,李付国,彭富华, 等.航空材料学报, 2007, 27(5), 40.
13 Zhou J R, Qi Y L. Journal of Tsinghua University, 2012, 52(7), 929.
14 Yan J P, Xue Y, Zhang Z M.Journal of Plasticity Engineering, 2019, 26(6),206(in Chinese).
闫江鹏, 薛勇, 张治民.塑性工程学报, 2019, 26(6), 206.
15 Yang M, Liang Y L, Zhong Y.Nonferrous Metals Engineering, 2013, 3(6), 22(in Chinese).
杨明,梁益龙,钟应. 有色金属工程, 2013,3(6),22.
16 Yang M, Liang Y L, Zhong Y.Hot Working Technology, 2013, 42(22), 44(in Chinese).
杨明,梁益龙,钟应. 热加工工艺, 2013, 42(22), 44.
17 Mosleh A O, Mikhaylovskaya A V, Kotov A D,et al.Journal of Manufacturing Processes, 2019, 45,262.
18 Lin Y C, Chen M S, Zhong J.Mechanics Research Communications,2008,3(35),142.
19 Prasady Y V R K, Gegel H L, Doraivelu S M.Metallurgical and Materials Transaction A, 1984, 15(10), 1883.
20 Srinivasan N, Prasad Y V R K, Rao P R.Materials Science and Enginee-ring A, 2008, 476(1),146.
21 Prasad Y V R K.Indian Journal of Science and Technology, 1990, 28, 435.
[1] 梅金娜, 薛飞, 吴天栋, 卫娜, 蔡振. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(Z1): 336-341.
[2] 王伟, 王萌, 蔡军, 张浩泽, 史亚鸣, 张晓锋, 黄海广, 王快社. EB炉熔炼TC4钛合金轧制过程中的组织演变与力学性能[J]. 材料导报, 2021, 35(8): 8140-8145.
[3] 王颂博, 李全安, 陈晓亚, 朱利敏, 张帅, 关海昆. Zn对Mg-11Gd-3Y-0.5Zr合金热压缩行为的影响[J]. 材料导报, 2021, 35(4): 4124-4128.
[4] 何春雨, 余伟, 程知松, 王铭阳, 唐荻. 高强耐蚀车体用钢热变形行为及本构方程的研究[J]. 材料导报, 2021, 35(18): 18153-18162.
[5] 曾泽瑶, 杨银辉, 曹建春, 倪珂, 潘晓宇. 18Cr-3Mn-1Ni-0.22N节镍型双相不锈钢热压缩再结晶行为研究[J]. 材料导报, 2021, 35(18): 18163-18169.
[6] 刘洁, 艾桃桃, 李文虎, 寇领江, 包维维, 董洪峰, 李梅. 通孔构型Ti6Al4V/Ti2AlC-TiAl基叠层复合板材的组织和性能[J]. 材料导报, 2021, 35(16): 16081-16085.
[7] 许爱平, 侯继军, 董俊慧. 稀土活性剂对TC4钛合金激光焊焊接接头的影响[J]. 材料导报, 2020, 34(Z2): 348-350.
[8] 任军帅, 李欣琳, 肖松涛, 周立鹏, 舒滢, 张英明. 新型Ti-Al-Zr-Nb-Mo-Si钛合金热变形行为及基于BP神经网络模型的本构关系研究[J]. 材料导报, 2020, 34(Z1): 283-288.
[9] 仇鹏, 王家毅, 段晓鸽, 蔺宏涛, 陈康, 江海涛. AA7021铝合金热变形行为及微观组织演变机理的研究[J]. 材料导报, 2020, 34(8): 8106-8112.
[10] 吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
[11] 罗锐, 陈乐利, 曹赟, 周皓天, 崔树刚, 韩敏, 裴昌磊, 程晓农, 高佩. 铬钼高温铁素体钢的形变特性与动态再结晶模型[J]. 材料导报, 2020, 34(20): 20118-20122.
[12] 刘松浩, 司家勇, 陈龙, 徐梦杰. FGH4096合金含高应变速率的流变行为和热加工图构建[J]. 材料导报, 2020, 34(20): 20123-20129.
[13] 任超, 罗军明, 陈宇海, 黄俊, 徐吉林. 喷丸对TC4合金微弧氧化涂层磨损和腐蚀行为的影响[J]. 材料导报, 2020, 34(18): 18081-18085.
[14] 王颂博, 李全安, 陈晓亚, 朱利敏, 张帅, 关海昆. Mg-11Gd-3Y-1.1Zn-0.5Zr的高温热压缩行为及热加工图[J]. 材料导报, 2020, 34(18): 18104-18108.
[15] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. TC4合金激光熔覆材料的研究现状[J]. 材料导报, 2020, 34(15): 15132-15137.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed