Please wait a minute...
材料导报  2021, Vol. 35 Issue (20): 20129-20136    https://doi.org/10.11896/cldb.20090036
  金属与金属基复合材料 |
S34MnV钢的连续冷却转变行为及相变动力学研究
阎勇, 李萌蘖, 卜恒勇, 郑善举
昆明理工大学材料科学与工程学院,昆明 650093
Continuous Cooling Transformation Behavior and Transformation Kinetics of S34MnV Steel
YAN Yong, LI Mengnie Victor, BU Hengyong, ZHENG Shanju
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 9687KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作利用DIL-805ADT动态热膨胀相变仪测定了S34MnV钢不同冷却速率下的相变膨胀量,通过光学显微组织观察、SEM组织观察、能谱成分扫描、XRD物相检测等手段对S34MnV钢在连续冷却过程中的组织转变规律进行了深入分析,运用切线法对相变拐点前后的膨胀曲线进行线性拟合,得到了S34MnV钢在加热和不同速度冷却下的相变点,根据所得到的相变点和对应的相变时间结合微观组织分析绘制了S34MnV钢的连续冷却转变(CCT)曲线。同时为更好地描述S34MnV钢在连续冷却过程中的扩散型相变,本工作采用了针对低合金钢更加准确实用的Li模型,根据绘制出的CCT曲线修正了描述铁素体、珠光体、贝氏体相变的Li模型参数,使其可以用于热处理冷却过程中复杂的奥氏体分解,并拟合出马氏体相变Koistinen-Marburger(K-M)方程的参数,较为完整地建立了S34MnV钢连续冷却转变过程中的铁素体、珠光体、贝氏体和马氏体相变的动力学模型。结果表明,本研究所述模型计算所得的转变量与实验所得结果一致,说明该模型可用于预测S34MnV钢热处理冷却过程中的相变,也为后续大型船用曲轴的数值模拟提供了准确的数学模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
阎勇
李萌蘖
卜恒勇
郑善举
关键词:  S34MnV  船用曲轴钢  膨胀曲线  相变点  CCT曲线  相变动力学    
Abstract: Dilations of S34MnV steel during continuous cooling at different cooling rates were measured utilizing DIL-805ADT dynamic dilatometer. The transformation points of S34MnV steel, which are the austenitizing critical points Ac1 and Ac3, bainite transformation points Bs and Bf, martensitic transformation points Ms and Mf, were obtained under different heating and cooling speeds by the tangent method that fits the expansion curves before and after the transformation inflection point. The microstructure and phase of continuous cooling transformation of S34MnV steel were observed and analyzed by optical microscope(OM), scanning electron microscope(SEM), energy dispersive spectrometer(EDS)and X-ray diffraction(XRD).The CCT curve of S34MnV steel was drawn according to the transformation time corresponding to these transformation points and the microstructure analysis. Meanwhile, a more accurate and practical Li model for low alloy steel is adopted in this paper to describe the diffusion transformation in the continuous cooling process. The ferrite, pearlite and bainite transformation described by the Li model, which was used to calculate the complex austenite decomposition reaction in the cooling process of heat treatment was modified by the CCT curve and the Koistinen-Marburger (K-M) equation of the martensitic transformation was fitted. The dynamic models of ferrite transformation, pearlite transformation, bainite transformation and martensite transformation in the continuous cooling transformation process of S34MnV steel were established comprehensively. The results of the experimental observation are consistent with the transformation calculated by the model, which could provide an accurate mathematical model for the numerical simulation of large marine crankshaft, and could be used to predict the phase transformation of S34MNV steel during the cooling process of heat treatment.
Key words:  S34MnV    marine crankshaft steel    expansion curve    transformation point    CCT curve    transformation kinetics
               出版日期:  2021-10-25      发布日期:  2021-11-12
ZTFLH:  TG142.33  
基金资助: 科技部材料基因工程关键技术与支撑平台重点研发计划 (2017YFB0701804)
通讯作者:  limengnie@163.com   
作者简介:  阎勇,男,昆明理工大学材料科学与工程学院2018级硕士研究生,主要研究方向为材料加工集成计算材料工程。
李萌蘖,四川仁寿人,昆明理工大学材料科学与工程学院,教授,博士生导师,国家“引进海外高层次人才”长期项目入选者、云南省“高层次人才引进计划”高层次人才,云南省集成计算材料工程高层次创新创业团队负责人,中国机械工程学会热处理学会第十一届理事会理事。主要研究方向材料基因工程和金属材料加工集成计算材料工程。
引用本文:    
阎勇, 李萌蘖, 卜恒勇, 郑善举. S34MnV钢的连续冷却转变行为及相变动力学研究[J]. 材料导报, 2021, 35(20): 20129-20136.
YAN Yong, LI Mengnie Victor, BU Hengyong, ZHENG Shanju. Continuous Cooling Transformation Behavior and Transformation Kinetics of S34MnV Steel. Materials Reports, 2021, 35(20): 20129-20136.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090036  或          http://www.mater-rep.com/CN/Y2021/V35/I20/20129
1 Sun M Y, Lu S P, Li S J, et al. Advanced Materials Research,2007,26-28,1037.
2 Monika K, Bedich S, Simona Z, et al. Journal of Thermal Analysis and Calorimetry,2017,127,423.
3 Chen Z Y, Nash P, Zhang Y. Metallurgical and Materials Transactions B,2019,50(3),1.
4 Johnson W A, Mehl R F. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers,1939,135,416.
5 Avrami M. Journal of Chemical Physics,1941,9(2),177.
6 Li M V, Niebuhr D V, Meekisho L L, et al. Metallurgical and Materials Transactions B,1998,29(3),661.
7 Koistinen D P, Marburger R E. Acta Metallurgica,1959,7(1),59.
8 Tang Li, Yin Limeng, Wang Jinzhao, et al. Materials Reports B: Research Papers,2019,33(9),3119(in Chinese).
唐丽,尹立孟,王金钊,等.材料导报:研究篇,2019,33(9),3119.
9 Gao Ning. Transactions of Metal Heat Treatment,1998,19(4),38(in Chinese).
高宁.金属热处理学报,1998,19(4),38.
10 Marder A R, Goldstein J L. Phase transformation in ferrous alloys, Metallurgical Society of AIME, New York, USA,1983.
11 Zener C. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers,1946,167,550.
12 Hillert M. Jernkontorets Annaler,1957,141,757.
13 Cui Zhongqi. Metallurgy and heat treatment, China Machine Press,1989.
崔忠圻.金属学与热处理.机械工业出版社,1989.
14 Qiu Ling, Wu Hongqing, Zhang Le, et al. Materials Reports,2019,33(S1),386(in Chinese).
邱凌,吴红庆,张乐,等.材料导报,2019,33(S1),386.
15 Ji Linkang, Zhang Weiwei, Gao Huilin, et al. Journal of Materials Engineering,2011(2),10(in Chinese).
吉玲康,张伟卫,高惠临,等.材料工程,2011(2),10.
16 Xu Guang. Determination and drawing of CCT curve of metal materials, Chemical Industry Press, Beijing,2009.
徐光.金属材料CCT曲线测定及绘制.化学工业出版社,2009.
17 Li Hongying, Wang F Y, Zeng C T, et al. Journal of Central South University (Science and Technology),2011,42(7),1928(in Chinese).
李红英,王法云,曾翠婷,等.中南大学学报(自然科学版),2011,42(7),1928.
18 Liu Xiangru, Zhou X D. Heat Treatment of Metals,2010,35(6),84(in Chinese).
刘香茹,周旭东.金属热处理,2010,35(6),84.
19 Zhang M, Li Q S, Han K, et al. Applied Mechanics and Materials,2012,152-154,585.
20 Zhang M, Li L, Fu R Y, et al. Materials Science & Engineering A,2006,438-440,296.
[1] 孙朋飞, 姚丹丹, 张鹏林, 王董琪琼, 侯嘉鹏, 王强, 张哲峰. 金属焊接接头疲劳寿命延长技术综述[J]. 材料导报, 2021, 35(9): 9059-9068.
[2] 郑铭达, 吴红庆, 左鹏鹏, 吴晓春. V对H13型压铸模具钢相变特性的影响[J]. 材料导报, 2020, 34(Z1): 440-443.
[3] 邱凌, 吴红庆, 张乐, 吴晓春. 碳含量对Cr-Mo-V系模具钢连续冷却转变规律的影响[J]. 材料导报, 2019, 33(z1): 386-391.
[4] 唐丽, 尹立孟, 王金钊, 刘成, 王学军. X80管线钢二次热循环的连续冷却转变行为及贝氏体相变动力学[J]. 材料导报, 2019, 33(18): 3119-3124.
[5] 李晓成, 郑亚风, 吴晓春. 晶粒尺寸对贝氏体钢SDP1的连续冷却转变规律的影响[J]. 《材料导报》期刊社, 2017, 31(6): 86-92.
[6] 江道, 易幼平, 黄始全. LD7铝合金淬火敏感性及相变动力学规律*[J]. 《材料导报》期刊社, 2017, 31(12): 140-144.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed