Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 86-92    https://doi.org/10.11896/j.issn.1005-023X.2017.06.018
  材料研究 |
晶粒尺寸对贝氏体钢SDP1的连续冷却转变规律的影响
李晓成1, 2, 3, 郑亚风1, 2, 3, 吴晓春1, 2, 3
1 省部共建高品质特殊钢冶金与制备国家重点实验室, 上海 200072;
2 上海市钢铁冶金新技术开发应用重点实验室,
上海 200072;
3 上海大学材料科学与工程学院, 上海 200072
Influence of Grain Size on Continuous Cooling Transformation Rules of a
Bainitic Steel SDP1
LI Xiaocheng1,2,3, ZHENG Yafeng1,2,3, WU Xiaochun1,2,3
1 State Key Laboratory of Advanced Special Steel, Shanghai 200072;
2 Shanghai Key Laboratory of Advanced
Ferrometallurgy, Shanghai 200072;
3 School of Materials Science and Engineering, Shanghai University, Shanghai 200072
下载:  全 文 ( PDF ) ( 3762KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用热膨胀仪测量了150 μm和20 μm大小两种晶粒尺寸的SDP1贝氏体钢的过冷奥氏体连续冷却转变(CCT)曲线,结合组织观察、硬度测试、热力学计算及动力学分析研究了晶粒尺寸对相变过程组织和硬度的影响。结果表明,小晶粒材料在低冷速相变过程中出现了片状珠光体,最低硬度为305HV,贝氏体转变对应冷速区间较小;大晶粒材料在各冷却条件下无珠光体产生,且贝氏体转变区较大,最低硬度为423HV。150 μm和20 μm晶粒材料的贝氏体相变激活能分别为124 kJ·mol-1和134 kJ·mol-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李晓成
郑亚风
吴晓春
关键词:  预硬型塑料模具钢  晶粒尺寸  相变  贝氏体  CCT曲线    
Abstract: Continuous cooling transformation (CCT) curves of SDP1 with 150 μm and 20 μm grain size were tested by dilatometer. Based on the curves, the effect of grain size on phase transformation, microstructure and hardness of the SDP1 steel were studied by means of OM, SEM, hardness test, thermodynamic calculation and kinetic analysis.The experimental results showed that specimen with smaller grain could display lamellar pearlite in the low cooling rate conditions with hardness about 305HV and had a smaller bainitic transformation zone. The specimen with bigger grain size had no pearlite formation and bainitic transformation zone was larger with hardness about 423HV. The activation energy of bainitic transformation of specimens with grain size of 150 μm and 20 μm were 124 kJ·mol-1 and 134 kJ·mol-1, respectively.
Key words:  pre-hardening plastic mould steel    grain size    phase transformation    bainite    CCT diagrams
               出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TG151.2  
基金资助: 国家科技支撑计划课题(2007BAE51B04)
作者简介:  李晓成:男,1987年生,博士研究生,主要研究方向为模具钢生产及表面处理,E-mail: xiaobf91@shu.edu.cn
引用本文:    
李晓成, 郑亚风, 吴晓春. 晶粒尺寸对贝氏体钢SDP1的连续冷却转变规律的影响[J]. 《材料导报》期刊社, 2017, 31(6): 86-92.
LI Xiaocheng, ZHENG Yafeng, WU Xiaochun. Influence of Grain Size on Continuous Cooling Transformation Rules of a
Bainitic Steel SDP1. Materials Reports, 2017, 31(6): 86-92.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.018  或          http://www.mater-rep.com/CN/Y2017/V31/I6/86
1 Zuo P P, Zhang Z, Ji W L, et al.Hardness and microstructure of bainite pre-hardened plastic mould steel in large block[J].Shanghai Met,2012,34(5):25(in Chinese).
左鹏鹏, 张铮, 季文龙,等.贝氏体预硬型塑料模具钢大模块硬度与组织分析[J].上海金属,2012,34(5):25.
2 Luo Y. Design and research on the non-quenched prehardened plastic mould steel[D].Shanghai:Shanghai University,2009(in Chinese).
罗毅. 非调质塑料模具钢的设计与研究 [D].上海:上海大学,2009.
3 Wu X C, Zhang Z. Status and development of microalloyed plastic mould steels with medium-low carbon[J].Die Mould Ind,2013,39(6):1(in Chinese).
吴晓春, 张铮.中低碳微合金塑料模具钢研究现状与进展[J].模具工业,2013,39(6):1.
4 Yang W Y, Hu A M, Sun Z Q. Effect of austrnite grain size on strain enhanced transformation in a low carbon steel[J].Acta Metall Sin,2000,36(10):1055(in Chinese).
杨王玥, 胡安民,孙祖庆. 低碳钢奥氏体晶粒控制对应变强化相变的影响[J].金属学报,2000,36(10):1055.
5 Han B J. Research on the grain ultra-refinement in austenite by dynamic recrystallization and its martensitic transformation[D].Shanghai:Shanghai Jiao Tong University,2008(in Chinese).
韩宝军. 奥氏体动态再结晶晶粒超细化及其马氏体相变研究[D].上海:上海交通大学,2008.
6 Zhao Hongzhuang, Young-kook, Liu Xianghua, et al.The effects of austenite grain size on banite transformation kinetics in AISI 4340 steel[J]. Trans Mater Heat Treat,2006,27(2):59(in Chinese).
赵洪壮, Young-kook, 刘相华,等. 奥氏体晶粒度对 AISI 4340 钢贝氏体相变动力学的影响[J]. 材料热处理学报,2006,27(2):59.
7 Wang J, Chu Z, Zhang Q. Research on austenitic grain growth in micro-alloyed forging steel[J].Hot Work Technol,2012,41(10):14(in Chinese).
王进, 褚忠, 张琦. 非调质钢奥氏体晶粒长大行为研究[J].热加工工艺,2012,41(10):14.
8 Yao S J.Investigation on related microstructure control and theory of uitra-refinement of austenite grains in microalloyed steel[D].Shenyang:Northeastern University,2009(in Chinese).
姚圣杰. 微合金钢奥氏体晶粒超细化的相关组织控制及理论研究.[D].沈阳:东北大学,2009.
9 Ning B Q.Phase transformations and strengthening processes of T91 ferritic heat-resistant steel[D].Tianjin:Tianjin University,2007(in Chinese).
宁保群. T91 铁素体耐热钢相变过程及强化工艺[D].天津:天津大学,2007.
10 Min Y A, Deng C Y, Zhang Z, et al. Effect of chromium content on pearlite transformation microstructure and properties of medium carbon Mn-Cr steels[J].Trans Mater Heat Treat,2014,35(2):86(in Chinese).
闵永安, 邓传印, 张铮, 等. 铬含量对中碳锰铬钢珠光体相变组织和性能的影响[J].材料热处理学报,2014,35(2):86.
11 Mahadevan S, Giridhar A, Singh A. Calorimetric measurements on As-Sb-Se glasses[J].J Non-cryst Solids,1986,88:11.
12 Kumar S, Singh K, Mehta N. Calorimetric studies of crystallisation kinetics of Se75Te15-x Cd10Inx multi-component chalcogenide glasses using non-isothermal DSC[J].Philos Mag Lett,2010,90:547.
13 Baumann W, Leineweber A, Mittemeijer E J. Failure of Kissinger (-like) methods for determination of the activation energy of phase transformations in the vicinity of the equilibrium phase-transformation temperature[J]. J Mater Sci,2010,45:6075.
14 Gao Y Q, Wang W. On the activation energy of crystallization in metallic glasses[J]. J Non-cryst Solids,1986,81:129.
15 Sidel S, Santos F, Gordo V, et al. Avrami exponent of crystallization in tellurite glasses[J]. J Therm Anal Calorim,2011,106:613.
16 Duan L L, Zhang Z, Li X C, et al. Transformation process and kinetics in a new plastic mould of bainite steel SDP2[J].Trans Mater Heat Treat,2015,36(8):174(in Chinese).
段丽丽, 张铮, 李晓成, 等. SDP2 新型贝氏体模具钢的相变及动力学[J].材料热处理学报,2015,36(8):174.
17 Zhang Z M, Cai Q W, Wei Y, et al. Continuous cooling transformation behavior and kinetic models of transformations for an ultra-low carbon bainitic steel[J]. J Iron Steel Res Int,2012,19:73.
[1] 邱凌, 吴红庆, 张乐, 吴晓春. 碳含量对Cr-Mo-V系模具钢连续冷却转变规律的影响[J]. 材料导报, 2019, 33(z1): 386-391.
[2] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[3] 陈丽萍, 蔡亮, 李光华, 周强. 基于CiteSpace的储热技术研究进展与趋势[J]. 材料导报, 2019, 33(9): 1505-1511.
[4] 肖长江. 钙钛矿铁电体在超高压下的铁电重现[J]. 材料导报, 2019, 33(7): 1163-1168.
[5] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[6] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[7] 张煜, 聂登攀, 曹建新. 二氧化硅杂质对重晶石碳热还原反应的影响及其相变行为分析[J]. 材料导报, 2019, 33(6): 936-940.
[8] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[9] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[10] 徐强, 洪悦, 李楠, 伍翠兰. 气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响[J]. 材料导报, 2019, 33(2): 330-334.
[11] 郑国明, 李磊, 毛小南, 蔡建华, 吴聪, 雷磊. 钛合金BCC↔HCP相变的变体选择及其对晶体取向的影响[J]. 材料导报, 2019, 33(17): 2910-2917.
[12] 张化福,沙浩,吴志明,蒋亚东,王操,孙艳,景强. 太赫兹波段二氧化钒薄膜的研究进展[J]. 材料导报, 2019, 33(15): 2513-2523.
[13] 毛虎,杨宏亮,史晓斌. 纳米晶NiTi形状记忆合金的研究进展[J]. 材料导报, 2019, 33(13): 2237-2242.
[14] 樊启哲, 廖春发, 陈鑫, 张志文, 余长林. 通过热处理调控光催化剂性质的研究进展[J]. 材料导报, 2019, 33(11): 1853-1859.
[15] 薛宗伟, 李心慰, 栾旭, 罗旭东, 徐若梦, 吴锋. 纳米氧化锆对氧化镁陶瓷抗热震性的影响[J]. 材料导报, 2019, 33(10): 1630-1633.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed