Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 86-92    https://doi.org/10.11896/j.issn.1005-023X.2017.06.018
  材料研究 |
晶粒尺寸对贝氏体钢SDP1的连续冷却转变规律的影响
李晓成1, 2, 3, 郑亚风1, 2, 3, 吴晓春1, 2, 3
1 省部共建高品质特殊钢冶金与制备国家重点实验室, 上海 200072;
2 上海市钢铁冶金新技术开发应用重点实验室,
上海 200072;
3 上海大学材料科学与工程学院, 上海 200072
Influence of Grain Size on Continuous Cooling Transformation Rules of a
Bainitic Steel SDP1
LI Xiaocheng1,2,3, ZHENG Yafeng1,2,3, WU Xiaochun1,2,3
1 State Key Laboratory of Advanced Special Steel, Shanghai 200072;
2 Shanghai Key Laboratory of Advanced
Ferrometallurgy, Shanghai 200072;
3 School of Materials Science and Engineering, Shanghai University, Shanghai 200072
下载:  全 文 ( PDF ) ( 3762KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用热膨胀仪测量了150 μm和20 μm大小两种晶粒尺寸的SDP1贝氏体钢的过冷奥氏体连续冷却转变(CCT)曲线,结合组织观察、硬度测试、热力学计算及动力学分析研究了晶粒尺寸对相变过程组织和硬度的影响。结果表明,小晶粒材料在低冷速相变过程中出现了片状珠光体,最低硬度为305HV,贝氏体转变对应冷速区间较小;大晶粒材料在各冷却条件下无珠光体产生,且贝氏体转变区较大,最低硬度为423HV。150 μm和20 μm晶粒材料的贝氏体相变激活能分别为124 kJ·mol-1和134 kJ·mol-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李晓成
郑亚风
吴晓春
关键词:  预硬型塑料模具钢  晶粒尺寸  相变  贝氏体  CCT曲线    
Abstract: Continuous cooling transformation (CCT) curves of SDP1 with 150 μm and 20 μm grain size were tested by dilatometer. Based on the curves, the effect of grain size on phase transformation, microstructure and hardness of the SDP1 steel were studied by means of OM, SEM, hardness test, thermodynamic calculation and kinetic analysis.The experimental results showed that specimen with smaller grain could display lamellar pearlite in the low cooling rate conditions with hardness about 305HV and had a smaller bainitic transformation zone. The specimen with bigger grain size had no pearlite formation and bainitic transformation zone was larger with hardness about 423HV. The activation energy of bainitic transformation of specimens with grain size of 150 μm and 20 μm were 124 kJ·mol-1 and 134 kJ·mol-1, respectively.
Key words:  pre-hardening plastic mould steel    grain size    phase transformation    bainite    CCT diagrams
出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TG151.2  
基金资助: 国家科技支撑计划课题(2007BAE51B04)
作者简介:  李晓成:男,1987年生,博士研究生,主要研究方向为模具钢生产及表面处理,E-mail: xiaobf91@shu.edu.cn
引用本文:    
李晓成, 郑亚风, 吴晓春. 晶粒尺寸对贝氏体钢SDP1的连续冷却转变规律的影响[J]. 《材料导报》期刊社, 2017, 31(6): 86-92.
LI Xiaocheng, ZHENG Yafeng, WU Xiaochun. Influence of Grain Size on Continuous Cooling Transformation Rules of a
Bainitic Steel SDP1. Materials Reports, 2017, 31(6): 86-92.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.018  或          https://www.mater-rep.com/CN/Y2017/V31/I6/86
1 Zuo P P, Zhang Z, Ji W L, et al.Hardness and microstructure of bainite pre-hardened plastic mould steel in large block[J].Shanghai Met,2012,34(5):25(in Chinese).
左鹏鹏, 张铮, 季文龙,等.贝氏体预硬型塑料模具钢大模块硬度与组织分析[J].上海金属,2012,34(5):25.
2 Luo Y. Design and research on the non-quenched prehardened plastic mould steel[D].Shanghai:Shanghai University,2009(in Chinese).
罗毅. 非调质塑料模具钢的设计与研究 [D].上海:上海大学,2009.
3 Wu X C, Zhang Z. Status and development of microalloyed plastic mould steels with medium-low carbon[J].Die Mould Ind,2013,39(6):1(in Chinese).
吴晓春, 张铮.中低碳微合金塑料模具钢研究现状与进展[J].模具工业,2013,39(6):1.
4 Yang W Y, Hu A M, Sun Z Q. Effect of austrnite grain size on strain enhanced transformation in a low carbon steel[J].Acta Metall Sin,2000,36(10):1055(in Chinese).
杨王玥, 胡安民,孙祖庆. 低碳钢奥氏体晶粒控制对应变强化相变的影响[J].金属学报,2000,36(10):1055.
5 Han B J. Research on the grain ultra-refinement in austenite by dynamic recrystallization and its martensitic transformation[D].Shanghai:Shanghai Jiao Tong University,2008(in Chinese).
韩宝军. 奥氏体动态再结晶晶粒超细化及其马氏体相变研究[D].上海:上海交通大学,2008.
6 Zhao Hongzhuang, Young-kook, Liu Xianghua, et al.The effects of austenite grain size on banite transformation kinetics in AISI 4340 steel[J]. Trans Mater Heat Treat,2006,27(2):59(in Chinese).
赵洪壮, Young-kook, 刘相华,等. 奥氏体晶粒度对 AISI 4340 钢贝氏体相变动力学的影响[J]. 材料热处理学报,2006,27(2):59.
7 Wang J, Chu Z, Zhang Q. Research on austenitic grain growth in micro-alloyed forging steel[J].Hot Work Technol,2012,41(10):14(in Chinese).
王进, 褚忠, 张琦. 非调质钢奥氏体晶粒长大行为研究[J].热加工工艺,2012,41(10):14.
8 Yao S J.Investigation on related microstructure control and theory of uitra-refinement of austenite grains in microalloyed steel[D].Shenyang:Northeastern University,2009(in Chinese).
姚圣杰. 微合金钢奥氏体晶粒超细化的相关组织控制及理论研究.[D].沈阳:东北大学,2009.
9 Ning B Q.Phase transformations and strengthening processes of T91 ferritic heat-resistant steel[D].Tianjin:Tianjin University,2007(in Chinese).
宁保群. T91 铁素体耐热钢相变过程及强化工艺[D].天津:天津大学,2007.
10 Min Y A, Deng C Y, Zhang Z, et al. Effect of chromium content on pearlite transformation microstructure and properties of medium carbon Mn-Cr steels[J].Trans Mater Heat Treat,2014,35(2):86(in Chinese).
闵永安, 邓传印, 张铮, 等. 铬含量对中碳锰铬钢珠光体相变组织和性能的影响[J].材料热处理学报,2014,35(2):86.
11 Mahadevan S, Giridhar A, Singh A. Calorimetric measurements on As-Sb-Se glasses[J].J Non-cryst Solids,1986,88:11.
12 Kumar S, Singh K, Mehta N. Calorimetric studies of crystallisation kinetics of Se75Te15-x Cd10Inx multi-component chalcogenide glasses using non-isothermal DSC[J].Philos Mag Lett,2010,90:547.
13 Baumann W, Leineweber A, Mittemeijer E J. Failure of Kissinger (-like) methods for determination of the activation energy of phase transformations in the vicinity of the equilibrium phase-transformation temperature[J]. J Mater Sci,2010,45:6075.
14 Gao Y Q, Wang W. On the activation energy of crystallization in metallic glasses[J]. J Non-cryst Solids,1986,81:129.
15 Sidel S, Santos F, Gordo V, et al. Avrami exponent of crystallization in tellurite glasses[J]. J Therm Anal Calorim,2011,106:613.
16 Duan L L, Zhang Z, Li X C, et al. Transformation process and kinetics in a new plastic mould of bainite steel SDP2[J].Trans Mater Heat Treat,2015,36(8):174(in Chinese).
段丽丽, 张铮, 李晓成, 等. SDP2 新型贝氏体模具钢的相变及动力学[J].材料热处理学报,2015,36(8):174.
17 Zhang Z M, Cai Q W, Wei Y, et al. Continuous cooling transformation behavior and kinetic models of transformations for an ultra-low carbon bainitic steel[J]. J Iron Steel Res Int,2012,19:73.
[1] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[2] 范浩博, 豆书亮, 李垚. 二氧化钒智能热控涂层光学结构原理及研究进展[J]. 材料导报, 2025, 39(1): 24100229-10.
[3] 齐顺顺, 王文健, 汪渊, 丁昊昊. 贝氏体钢轨磨损与接触疲劳行为的研究进展[J]. 材料导报, 2025, 39(1): 23090020-11.
[4] 陈琛, 陈昱林, 苏璇, 卢璟钰, 于俊杰, 张建, 吉卫喜. Al-Zn体系高压扭转过程中的相变机理[J]. 材料导报, 2024, 38(9): 22120148-6.
[5] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[6] 杨劼, 任慧平, 王海燕, 高雪云, 刘宗昌. 低碳贝氏体钢等温淬火变体选择与特殊晶面定量化表征[J]. 材料导报, 2024, 38(9): 22100050-8.
[7] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[8] 王丽红, 满蛟, 姜一鸣, 刘庚根, 周建平. 外加载荷对热弹性马氏体正-逆相变影响机制的相场模拟研究[J]. 材料导报, 2024, 38(8): 22070156-7.
[9] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[10] 成鑫磊, 穆锐, 孙涛, 刘元雪, 胡志德, 蒋昊洋. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报, 2024, 38(5): 23080048-15.
[11] 范晓燕, 赵雪婷, 欧志强. 塑晶材料及其压卡效应研究发展与展望[J]. 材料导报, 2024, 38(5): 22080087-8.
[12] 赵荣, 韩子夜, 吴飞翔, 刘太奇, 李谭秋. 基于十水硫酸钠的个体防护材料的制备及性能[J]. 材料导报, 2024, 38(3): 22090074-5.
[13] 曹磊, 杨依铭, 王国承. 镁钛对包晶钢凝固过程中包晶转变收缩的影响[J]. 材料导报, 2024, 38(24): 23080216-6.
[14] 张维, 张义博, 张琪, 姚继明, 郝尚. PDMS包封CPCM制备三明治结构织物及热性能分析[J]. 材料导报, 2024, 38(19): 23050176-5.
[15] 郑勇, 邱绍宇, 魏连峰, 杨灿湘, 王宇, 田大容, 姚力夫. 高压条件下锆及其合金ω相变研究进展[J]. 材料导报, 2024, 38(17): 23020025-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed