Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 21050251-9    https://doi.org/10.11896/cldb.21050251
  金属与金属基复合材料 |
基于加工硬化率的新型轻质钢动态再结晶临界条件及变形机制研究
孙建1,2,3, 黄贞益1,2, 李景辉1,2, 王萍1,2, 吴旭明1,2
1 安徽工业大学冶金工程学院,安徽 马鞍山 243002
2 安徽工业大学冶金工程与资源综合利用安徽省重点实验室,安徽 马鞍山 243002
3 铜陵学院机械工程学院,安徽 铜陵 244061
Study on the Critical Condition and Deformation Mechanism of Dynamic Recrystallization of Novel Lightweight Steel Based on the Work Hardening Rate
SUN Jian1,2,3, HUANG Zhenyi1,2, LI Jinghui1,2, WANG Ping1,2, WU Xuming1,2
1 School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243002, Anhui, China
2 China Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Ministry of Education, Anhui University of Technology, Maanshan 243002, Anhui, China
3 School of Mechanical Engineering, Tongling University, Tongling 244061, Anhui, China
下载:  全 文 ( PDF ) ( 13457KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用Gleeble3500热模拟实验机,在850~1 050 ℃温度范围内和0.01~5 s-1应变速率范围内,对试验钢进行了等温压缩变形处理,得到试验钢的应力-应变曲线。通过数据处理进一步得到试验钢加工硬化率-应变关系曲线、动态再结晶临界应力和临界应变,并借助OM、TEM及EBSD表征技术,分析了试验钢的组织演化规律和变形机制。结果表明:在相对低温和低应变速率下,随着应变量的增加,由于加工硬化再次占据主导地位,试验钢出现了明显的流动应力“二次增大”现象;随着热变形温度的降低和应变速率的增大,试验钢的峰值应力和临界应力、峰值应变和临界应变都呈现出增大趋势,并得出其相互之间新的关系模型;在变形条件下,试验钢再结晶晶粒尺寸随着温度的升高和应变速率的降低而增大,层错能(SFE)值随着变形温度的升高而增大,范围为181.1~237.4 mJ/m2,试验钢热变形后组织中有孪晶存在,说明SFE并非是影响高锰奥氏体钢变形机制的唯一因素,试验钢的主要变形机制为位错滑移。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙建
黄贞益
李景辉
王萍
吴旭明
关键词:  轻质钢  等温压缩  加工硬化率  动态再结晶  变形机制    
Abstract: In this work, the stress-strain curves of the experimental steel were obtained after isothermal compression deformation within the temperature 850—1 050 ℃ of and the strain rate of 0.01—5 s-1 on Gleeble3500 thermal-mechanical simulator. The work hardening rate-strain curves, dynamic recrystallization critical stress and critical strain of the experimental steel were further obtained by data processing. The microstructures evolution and deformation mechanism of the experimental steel were analyzed by OM, TEM and EBSD. The results show that for the experimental steel, there is an obvious ‘secondary increase’ phenomenon of the flow stress, for the the dominant position is occupied again by work hardening as the strain increases at relatively low temperature and low strain rate. The peak stress, critical stress, peak strain and critical strain of the experimental steel show an increasing trend, as the deformation temperature decreases and the strain rate increases, and simultaneously, a new relationship model between them is obtained. The recrystallization grain size of the experimental steel increases with the increase of temperature and the decrease of strain rate, and the stacking fault energy (SFE) ranges from 181.1 mJ/m2 to 237.4 mJ/m2, which exhibits increasing trend with the increase of temperature under the deformation condition. It can be concluded that stacking fault energy is not the only factor affecting the deformation mechanism of the experimental steel because of the presence of the twins after hot deformation of the experimental steel. Dislocation slipping is the main deformation mechanism of the experimental steel.
Key words:  lightweight steel    isothermal compression    work hardening rate    dynamic recrystallization    deformation mechanism
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  TG142.1  
基金资助: 国家自然科学基金(51674004;51805002)
通讯作者:  huangzhenyi@ahut.edu.cn; ljh0747@163.com   
作者简介:  孙建,讲师,2011年7月于铜陵学院获工学学士学位,2014年7月于安徽工业大学获工学硕士学位,目前为安徽工业大学冶金工程专业在读博士研究生。从事先进钢铁材料加工工艺及组织性能调控研究。
黄贞益,1999年6月于东北大学获工学硕士学位,2012年1月于南京理工大学获工学博士学位,现为安徽工业大学教授、博士研究生导师。长期以来从事钢铁材料成型理论、工艺、性能控制等领域的应用基础和工程技术的教学及研究。主编安徽省规划教材1部,获中国冶金教育类优秀教材一等奖,发表论文60余篇,授权发明专利11项、实用新型专利4项。主持参加完成国家支撑计划项目、国家自然科学基金项目、国家钢铁联合基金重点项目等重大难题攻关项目60余项。
李景辉,安徽工业大学冶金工程学院副教授。2012年7月于东北大学获理学学士学位, 2017年12月于西北工业大学获工学博士学位,现教授材料成型及控制工程专业课程,从事金属材料轻量化研究,主持国家自然科学基金1项,发表论文10余篇。
引用本文:    
孙建, 黄贞益, 李景辉, 王萍, 吴旭明. 基于加工硬化率的新型轻质钢动态再结晶临界条件及变形机制研究[J]. 材料导报, 2022, 36(19): 21050251-9.
SUN Jian, HUANG Zhenyi, LI Jinghui, WANG Ping, WU Xuming. Study on the Critical Condition and Deformation Mechanism of Dynamic Recrystallization of Novel Lightweight Steel Based on the Work Hardening Rate. Materials Reports, 2022, 36(19): 21050251-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050251  或          http://www.mater-rep.com/CN/Y2022/V36/I19/21050251
1 Chen S, Rana R, Haldar A, et al. Progress in Materials Science, 2017, 89, 345.
2 Zambrano O A. Journal of Materials Science, 2017, 53(20), 14003.
3 Liu C Q, Peng Q C, Xue Z L,et al. Materials Reports A: Review Papers, 2019, 33(8), 2572(in Chinese).
刘春泉, 彭其春, 薛正良, 等. 材料导报:综述篇, 2019, 33(8), 2572.
4 Pierce D T, Field D M, Limmer K R, et al. Materials Science and Engineering: A, 2021,825,141785.
5 Zhang X F, Wu X J, Tang L Z, et al. Ordnance Material Science and Engineering, 2020, 43(5), 11(in Chinese).
章小峰, 武学俊, 唐立志, 等. 兵器材料科学与工程, 2020, 43(5), 11.
6 Xu C B, Ye C L, Zhao G, et al. Journal of Wuhan University of Science and Technology, 2003, 26(4), 334(in Chinese).
余驰斌, 叶传龙, 赵刚, 等. 武汉科技大学学报, 2003, 26(4), 334.
7 Cao J R, Liu Z D, Cheng S C. Acta Metallurgica Sinica, 2007, 43(1), 35(in Chinese).
曹金荣, 刘正东, 程世长. 金属学报, 2007, 43(1), 35.
8 Kim S I, Lee Y, Byon S M. Journal of Materials Processing Technology, 2003, 140, 84.
9 Li Z, Wang Y, Cheng X, et al. Materials Science and Engineering A, 2019, 772, 138700.
10 Ryan N D, Kocks U F. Solid State Phenomena, 1993, 35(36), 1.
11 Poliak E I, Jonas J J. Acta Materialia, 1996, 44(1), 127.
12 Wang Z T, Huo D, Yu X L. Transactions of Nonferrous Metals Society of China, 2018, 28(10), 1972(in Chinese).
王忠堂, 霍达, 于晓林. 中国有色金属学报, 2018, 28(10), 1972.
13 Ouyang D L, Lu S Q, Cui X, et al. Journal of Aeronautical Materials, 2010,30(2), 17(in Chinese).
欧阳德来, 鲁世强, 崔霞, 等. 航空材料学报, 2010, 30(2), 17.
14 Cai Y, Sun C Y, Wan L, et al. Acta Metallurgica Sinica, 2016, 52(9), 1123(in Chinese).
蔡赟, 孙朝阳, 万李, 等. 金属学报, 2016, 52(9), 1123.
15 Wang Z T, Deng Y G, Zhang S H. Transactions of Materials and Heat Treatment, 2014, 35(7), 193(in Chinese).
王忠堂, 邓永刚, 张士宏. 材料热处理学报, 2014, 35(7), 193.
16 Chen W, Guan Y P, Wang Z H. Materials Reports B:Research Papers, 2016, 30(11), 164(in Chinese).
陈微, 官英平, 王振华. 材料导报:研究篇, 2016, 30(11), 164.
17 Li Y P, Song R B, Wen E D, et al. Acta Metallurgica Sinica (English Letters), 2016, 29(5), 1.
18 Qin X M, Di H S, Chen L Q, et al. In: The 10th International Conference on Steel Rolling. Beijing, China, 2010, pp.154.
19 Pan X Y, Yang Y H, Ni K, et al. Chinese Journal of Materials Research, 2021, 35(5), 381(in Chinese).
潘晓宇, 杨银辉, 倪珂, 等. 材料研究学报, 2021, 35(5), 381.
20 Olson G B, Cohen M. Metallurgical and Materials Transactions A, 1976, 12, 1905.
21 Ma T, Gao J, Li H, et al. Metals, 2021, 11(2), 345.
22 Yoo J D, Park KT. Materials Science and Engineering A, 2008, 496, 417.
23 Saeed A A, Imlau J, Prahl U, et al. Metallurgical and Materials Transactions A, 2009, 40 (13), 3076.
24 Ishida K. Physica Status Solidi (A), 1976, 36 (2), 717.
25 Kaufman L. In: Proceedings of the fourth calphad meeting Workshop on computer-based coupling of thermochemical and phase diagram data. Maryland, 1977, pp. 89.
26 Curtze S, Kuokkala V T, Oikari A, et al. Acta Materialia, 2011, 59 (3), 1068.
[1] 张鸿飞, 丁雨田, 雷健, 沈悦, 陈建军, 高钰璧. 中低温挤压Mg-1.5Zn-0.2Ca合金组织与性能研究[J]. 材料导报, 2022, 36(3): 20120264-5.
[2] 黄子坤, 孙威. 钛合金动态塑性变形过程中绝热剪切带的形成机理[J]. 材料导报, 2021, 35(3): 3122-3128.
[3] 杨家坤, 包翔云, 张金钰, 刘刚, 孙军. 亚稳β钛合金的设计方法及室温变形机制的研究进展[J]. 材料导报, 2021, 35(19): 19170-19180.
[4] 曾泽瑶, 杨银辉, 曹建春, 倪珂, 潘晓宇. 18Cr-3Mn-1Ni-0.22N节镍型双相不锈钢热压缩再结晶行为研究[J]. 材料导报, 2021, 35(18): 18163-18169.
[5] 王睿鑫, 唐宇, 李顺, 白书欣. 高熵合金动态载荷下变形机制的研究进展[J]. 材料导报, 2021, 35(17): 17001-17009.
[6] 刘筱, 王洋洋, 叶俊宏, 朱必武, 杨辉, 胡铭月, 唐昌平, 刘文辉. AZ31镁合金高应变速率轧制宏微观仿真[J]. 材料导报, 2021, 35(14): 14101-14106.
[7] 尹畅畅, 余登德, 陈家林, 闻明, 管伟明, 谭志龙. NiPt15合金热变形行为及微观组织演变规律[J]. 材料导报, 2021, 35(10): 10120-10126.
[8] 韩丽青, 吴云胜, 刘状, 秦学智, 王常帅, 周兰章, 于宏, 陈亚军. 一种先进超超临界火电机组用Ni-Fe-Cr基高温合金的热变形行为[J]. 材料导报, 2020, 34(6): 6109-6113.
[9] 吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
[10] 王昕宇, 徐春, 黎雨, 庞灵欢, 王斌君, 陈建斌. 电脉冲拉伸下5052铝合金的变形行为及微观组织和织构演变[J]. 材料导报, 2020, 34(24): 24097-24103.
[11] 罗锐, 陈乐利, 曹赟, 周皓天, 崔树刚, 韩敏, 裴昌磊, 程晓农, 高佩. 铬钼高温铁素体钢的形变特性与动态再结晶模型[J]. 材料导报, 2020, 34(20): 20118-20122.
[12] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[13] 朱利敏, 李全安, 陈晓亚, 张清, 王颂博, 张帅. Mg-8Gd-0.5Zr合金热压缩过程中动态再结晶行为[J]. 材料导报, 2019, 33(24): 4117-4121.
[14] 屈鹏飞, 杨文超, 岳全召, 曹凯莉, 刘林. 镍基高温合金微孪晶形成机制的研究进展[J]. 材料导报, 2019, 33(23): 3971-3978.
[15] 肖罡, 卜晓兵, 杨钦文, 杨旭静, 冯江华. 高锰Hadfield钢单向拉伸变形及断裂行为研究[J]. 材料导报, 2019, 33(22): 3811-3814.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed