Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 21040243-6    https://doi.org/10.11896/cldb.21040243
  金属与金属基复合材料 |
偏析法制备高纯电子铝箔的再结晶织构演变
邓丽莎1, 何陈强1, 杨宏2,3, 甘勇2,3, 陈冷1,*
1 北京科技大学 材料科学与工程学院,北京 100083
2 广西容创新材料产业研究院有限公司,广西 贺州 542800
3 广西正润新材料科技有限公司,广西 贺州 542800
Recrystallization Texture Evolution of High-purity Aluminum Foil Prepared by Segregation Method
DENG Lisha1, HE Chenqiang1, YANG Hong2,3, GAN Yong2,3, CHEN Leng1,*
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Guangxi Rongchuang New Materials Industry Research Institute Co., Ltd., Hezhou 542800,Guangxi, China
3 Guangxi ZR Development Group Co., Ltd., Hezhou 542800,Guangxi, China
下载:  全 文 ( PDF ) ( 12398KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作基于偏析法高纯铝制备的高压电子铝箔,用电子背散射衍射(EBSD)和X射线衍射(XRD)方法研究其在退火过程中的再结晶织构演化,并建立元胞自动机(Cellular automata, CA)模型从能量角度解释不同再结晶机制。实验和模拟结果表明,分级退火时,在低温段变形基体中S型取向({123}〈634〉)和Cu型取向({112}〈111〉)的晶粒通过连续再结晶获得长大优势,立方取向({001}〈100〉)晶粒的形核受到抑制,在后续高温段S型取向和Cu型取向晶粒迅速长大并形成了以S型和Cu型织构为主的再结晶织构;直接高温退火时立方取向晶粒优先形核、长大从而形成强立方织构;CA模型表明两种不同退火条件下的能量差异是造成不同再结晶织构的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓丽莎
何陈强
杨宏
甘勇
陈冷
关键词:  高纯铝箔  偏析法  轧制  退火  再结晶  立方织构    
Abstract: High voltage electronic aluminum foil, prepared by segregation method, was studied about its the recrystallization behaviour during the annealing process using electron back-scattered diffraction (EBSD) and X-ray diffraction (XRD). And cellular automaton (CA) model was established to make a further analysis on the different recrystallization phenomena from the perspective of energy. The experimental results of stepping-annealing show that the grains of the S orientation ({123}〈634〉) and the Cu orientation ({112}〈111〉) obtained advantage in growth through in-situ recrystallization in the low-temperature annealing, which grew rapidly and formed RS and RCu recrystallization texture at the later high temperature period, but the nucleation of cube ({001}〈100〉) grains were inhibited. Then annealing at a higher temperature, cube grains tended to nucleate and grow preferentially, which led to the formation of strong cube texture. Seen from the results of cellular automaton model, distinction of textures mainly depends on the energy difference between these two annealing conditions.
Key words:  high-purity aluminum foil    segregation method    rolling    annealing    recrystallization    cube texture
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  TG146.21  
基金资助: 广西创新驱动发展专项(AA17202004);贺州创新发展驱动专项(ZX0710003)
通讯作者:  * lchen@ustb.edu.cn   
作者简介:  邓丽莎,北京科技大学材料科学与工程学院硕士研究生,目前主要从事材料织构与各向异性研究。
陈冷,北京科技大学材料科学与工程学院,教授,博士研究生导师,主要研究方向是材料的织构与各向异性。近年来,作为负责人承担国家自然科学基金、国家科技支撑计划、国家重点研发计划和企业研究项目多项。在国内外学术期刊发表论文100多篇。
引用本文:    
邓丽莎, 何陈强, 杨宏, 甘勇, 陈冷. 偏析法制备高纯电子铝箔的再结晶织构演变[J]. 材料导报, 2022, 36(21): 21040243-6.
DENG Lisha, HE Chenqiang, YANG Hong, GAN Yong, CHEN Leng. Recrystallization Texture Evolution of High-purity Aluminum Foil Prepared by Segregation Method. Materials Reports, 2022, 36(21): 21040243-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040243  或          http://www.mater-rep.com/CN/Y2022/V36/I21/21040243
1 Mao W M, He Y D. Principles on fabrication of aluminum foils for electrolytic capacitors, Higher Education Press, China, 2012, pp. 222(in Chinese).
毛卫民, 何业东. 电容器铝箔加工的材料学原理, 高等教育出版社, 2012, pp. 222.
2 Cao P. World Nonferrous Metals, 2018, 11, 10(in Chinese).
曹鹏. 世界有色金属, 2018, 1(11), 10.
3 Zhao R M, Li Y Z, Yang G, et al. Light Alloy Fabrication Technology, 2016, 44(12), 20(in Chinese).
赵瑞敏, 李玉章, 杨钢, 等. 轻合金加工技术, 2016, 44(12), 20.
4 SamajdarI, Doherty R D. Scripta Materialia, 1996, 32(6), 845.
5 Ridha A A, Hutchinson W B. Acta Metallurgica, 1982, 30(10), 1929.
6 Duggan B J, Lücke K, Köhlhoff G D, et al. Acta Metallurgica et Materialia, 1993, 41(6), 1921.
7 Gottstein G, Molodov D, Shvindlerman L. Interface Science, 1998, 6(1), 7.
8 Rios P R, Siciliano J F, Sandim H R Z, et al. Materials Research, 2005, 8(3), 225.
9 Skjervold S R, Ryum N. Acta Metallurgica, 1996, 44(8), 3407.
10 Humphreys F J, Hatherly M. Recrystallization and related annealing phenomena (second edition), Pergamon Press, Oxford, UK, 2004, pp. 452.
11 Oscarsson A, Ekstrom H E, Hutchinson B. Materials Science Forum, 1993, 113-115, 177.
12 Humphreys F J, Chan H M. Materials Science and Technology, 1996, 12, 143.
13 Lens A, Maurice C. Materials Science and Engineering A, 2005, A403, 144.
14 Albou A, Raveendra S, Karajagikar P, et al. Scripta Materialia, 2010, 62(7), 469.
15 Engler O. Materials Science and Technology, 1996, 12(10), 859.
16 Miszczyk M M, Paul H, Driver J H, et al. Acta Materialia, 2017, 129, 378.
17 Engler O. Metallurgical and Materials Transactions A, 1999, 30, 1517.
18 Engler O, Huh M Y. Materials Science and Engineering A, 1999, 271, 371.
19 Jazaeri H, Humphreys F J. Acta Materialia, 2004, 52(11), 3251.
20 Lu Y, Zhang L W, Deng X H, et al. Acta Metallurgica Sinica, 2008, 44(3), 292(in Chinese).
卢瑜, 张立文, 邓小虎, 等. 金属学报, 2008, 44(3), 292.
21 Marx V, Reher F R, Gottstein G. Acta Materialia, 1999, 47(4), 1219.
22 Rajmohan N, Szpunar J A. Materials Science and Technology, 1999, 15, 1259.
23 Rajmohan N, Szpunar J A. Acta Materialia, 2000, 48(13), 3327.
24 Szpunar J A, Narayanan R, Li H. Materials and Manufacturing Processes, 2007, 22(7-8), 928.
[1] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[2] 周杰明, 黎建明, 李冬旭, 赵永田, 杨海, 魏乃光. 降低m-CVDZnS多晶残余应力的带压退火研究[J]. 材料导报, 2022, 36(8): 20110116-7.
[3] 李朝阳, 黄光杰, 曹玲飞, 曹宇, 林林. 升温速率对AA2060铝锂合金中间形变热处理微观组织的影响[J]. 材料导报, 2022, 36(7): 21020008-7.
[4] 潘琳茹, 李雪莲, 王丽, 孙禄涛, 魏彬彬, 郭春生. 覆铜热处理对Fe80Si9B11非晶铁芯软磁性能的影响:一种改善非晶铁芯温度分布的方法[J]. 材料导报, 2022, 36(3): 20090082-4.
[5] 张鸿飞, 丁雨田, 雷健, 沈悦, 陈建军, 高钰璧. 中低温挤压Mg-1.5Zn-0.2Ca合金组织与性能研究[J]. 材料导报, 2022, 36(3): 20120264-5.
[6] 卢博, 李安敏, 饶宇, 汪林忠, 左天辰, 胡杨. 稀土Y及热处理对6016铝合金组织与性能的影响[J]. 材料导报, 2022, 36(19): 21070110-8.
[7] 孙建, 黄贞益, 李景辉, 王萍, 吴旭明. 基于加工硬化率的新型轻质钢动态再结晶临界条件及变形机制研究[J]. 材料导报, 2022, 36(19): 21050251-9.
[8] 万里, 张奇, 张勇, 唐建国, 邓运来. Cr和Mn对汽车用铝合金型材压溃性能的影响[J]. 材料导报, 2022, 36(18): 20110147-4.
[9] 于娟, 李国爱, 冯朝辉, 陈军洲, 赵唯一. 中间形变热处理对铝锂合金短横向拉伸性能的影响[J]. 材料导报, 2022, 36(18): 20060118-5.
[10] 谢功园, 王轶, 陈宇强, 刘文辉, 潘素平, 宋宇峰, 刘阳, 谭欣荣. 换向轧制对铜晶粒尺寸高温热稳定性的影响[J]. 材料导报, 2022, 36(18): 21010236-7.
[11] 张振, 丁旭, 田晓东, 史豪杰, 罗海龙. 退火温度对5052/AZ31B爆炸复合板组织与性能的影响[J]. 材料导报, 2022, 36(15): 21040005-6.
[12] 王楷, 梅瑞斌. “人工智能+有限元”模型在轧制领域的研究进展[J]. 材料导报, 2022, 36(13): 20110127-12.
[13] 李艳, 周增林, 何学良, 陈文帅, 惠志林. 轧制钼材制备过程织构演变的研究现状[J]. 材料导报, 2022, 36(12): 20090340-6.
[14] 王权, 吴长军, 徐雪薇, 彭浩平, 刘亚, 苏旭平. 退火处理对CoxCrFeMnNi2-x高熵合金显微组织和耐蚀性的影响[J]. 材料导报, 2022, 36(11): 21110150-7.
[15] 赵帆, 胡昊, 刘雅政, 张志豪, 谢建新. 基于23MnNiMoCr54钢复杂显微组织和表面脱碳演变规律的退火条件控制[J]. 材料导报, 2022, 36(1): 20100217-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed