Recrystallization Texture Evolution of High-purity Aluminum Foil Prepared by Segregation Method
DENG Lisha1, HE Chenqiang1, YANG Hong2,3, GAN Yong2,3, CHEN Leng1,*
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2 Guangxi Rongchuang New Materials Industry Research Institute Co., Ltd., Hezhou 542800,Guangxi, China 3 Guangxi ZR Development Group Co., Ltd., Hezhou 542800,Guangxi, China
Abstract: High voltage electronic aluminum foil, prepared by segregation method, was studied about its the recrystallization behaviour during the annealing process using electron back-scattered diffraction (EBSD) and X-ray diffraction (XRD). And cellular automaton (CA) model was established to make a further analysis on the different recrystallization phenomena from the perspective of energy. The experimental results of stepping-annealing show that the grains of the S orientation ({123}〈634〉) and the Cu orientation ({112}〈111〉) obtained advantage in growth through in-situ recrystallization in the low-temperature annealing, which grew rapidly and formed RS and RCu recrystallization texture at the later high temperature period, but the nucleation of cube ({001}〈100〉) grains were inhibited. Then annealing at a higher temperature, cube grains tended to nucleate and grow preferentially, which led to the formation of strong cube texture. Seen from the results of cellular automaton model, distinction of textures mainly depends on the energy difference between these two annealing conditions.
1 Mao W M, He Y D. Principles on fabrication of aluminum foils for electrolytic capacitors, Higher Education Press, China, 2012, pp. 222(in Chinese). 毛卫民, 何业东. 电容器铝箔加工的材料学原理, 高等教育出版社, 2012, pp. 222. 2 Cao P. World Nonferrous Metals, 2018, 11, 10(in Chinese). 曹鹏. 世界有色金属, 2018, 1(11), 10. 3 Zhao R M, Li Y Z, Yang G, et al. Light Alloy Fabrication Technology, 2016, 44(12), 20(in Chinese). 赵瑞敏, 李玉章, 杨钢, 等. 轻合金加工技术, 2016, 44(12), 20. 4 SamajdarI, Doherty R D. Scripta Materialia, 1996, 32(6), 845. 5 Ridha A A, Hutchinson W B. Acta Metallurgica, 1982, 30(10), 1929. 6 Duggan B J, Lücke K, Köhlhoff G D, et al. Acta Metallurgica et Materialia, 1993, 41(6), 1921. 7 Gottstein G, Molodov D, Shvindlerman L. Interface Science, 1998, 6(1), 7. 8 Rios P R, Siciliano J F, Sandim H R Z, et al. Materials Research, 2005, 8(3), 225. 9 Skjervold S R, Ryum N. Acta Metallurgica, 1996, 44(8), 3407. 10 Humphreys F J, Hatherly M. Recrystallization and related annealing phenomena (second edition), Pergamon Press, Oxford, UK, 2004, pp. 452. 11 Oscarsson A, Ekstrom H E, Hutchinson B. Materials Science Forum, 1993, 113-115, 177. 12 Humphreys F J, Chan H M. Materials Science and Technology, 1996, 12, 143. 13 Lens A, Maurice C. Materials Science and Engineering A, 2005, A403, 144. 14 Albou A, Raveendra S, Karajagikar P, et al. Scripta Materialia, 2010, 62(7), 469. 15 Engler O. Materials Science and Technology, 1996, 12(10), 859. 16 Miszczyk M M, Paul H, Driver J H, et al. Acta Materialia, 2017, 129, 378. 17 Engler O. Metallurgical and Materials Transactions A, 1999, 30, 1517. 18 Engler O, Huh M Y. Materials Science and Engineering A, 1999, 271, 371. 19 Jazaeri H, Humphreys F J. Acta Materialia, 2004, 52(11), 3251. 20 Lu Y, Zhang L W, Deng X H, et al. Acta Metallurgica Sinica, 2008, 44(3), 292(in Chinese). 卢瑜, 张立文, 邓小虎, 等. 金属学报, 2008, 44(3), 292. 21 Marx V, Reher F R, Gottstein G. Acta Materialia, 1999, 47(4), 1219. 22 Rajmohan N, Szpunar J A. Materials Science and Technology, 1999, 15, 1259. 23 Rajmohan N, Szpunar J A. Acta Materialia, 2000, 48(13), 3327. 24 Szpunar J A, Narayanan R, Li H. Materials and Manufacturing Processes, 2007, 22(7-8), 928.