Please wait a minute...
材料导报  2022, Vol. 36 Issue (15): 21040005-6    https://doi.org/10.11896/cldb.21040005
  金属与金属基复合材料 |
退火温度对5052/AZ31B爆炸复合板组织与性能的影响
张振1, 丁旭2,*, 田晓东1,*, 史豪杰1, 罗海龙3
1 长安大学材料科学与工程学院交通铺面材料教育部工程研究中心,西安 710064
2 西安航空学院新材料研究所,西安 710077
3 陕西瑞森金属复合材料有限公司,西安 713199
Effect of Annealing Temperature on Microstructure and Properties of 5052/AZ31B Explosive Composite Plate
ZHANG Zhen1, DING Xu2,*, TIAN Xiaodong1,*, SHI Haojie1, LUO Hailong3
1 Engineering Research Center of Transportation Materials of Ministry of Education, School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
2 Research Institute of Advanced Materials, Xi'an Aeronautical University, Xi'an 710077, China
3 Shaanxi Ruisen Metal Composites Co., Ltd., Xi'an 713199, China
下载:  全 文 ( PDF ) ( 9909KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将5052/AZ31B爆炸焊接复合板在300 ℃、350 ℃及400 ℃下进行退火处理,并研究了退火前后复合板的组织和性能。结果表明:退火过程中镁元素易于向铝侧扩散,扩散层主要位于靠近界面的铝侧;随着退火温度的升高,形成的扩散层逐渐变厚;退火前界面处物相组成为Mg基体、Al基体、Mg2Al3和Mg17Al12,退火温度为300 ℃、350 ℃和400 ℃时,物相组成不变;当退火温度从300 ℃提高到400 ℃时,复合板的抗拉强度逐渐下降,而断面收缩率和断后伸长率逐渐升高;对拉伸断口的分析表明,复合板铝侧为韧性断裂,镁侧为脆性断裂;经300 ℃、350 ℃和400 ℃退火后,复合板界面结合区剪切强度分别为50.88 MPa、33.15 MPa及19.50 MPa,明显低于退火前的剪切强度(98.44 MPa);经300 ℃、350 ℃和400 ℃退火后,复合板硬度分别为158.1HV、146.3HV及152.6HV,明显高于退火前的硬度(129.6HV),且镁侧硬度变化较大。退火后界面结合区的高硬度是由于在扩散层中有硬脆相金属间化合物Mg2Al3和Mg17Al12生成。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张振
丁旭
田晓东
史豪杰
罗海龙
关键词:  5052/AZ31B复合板  退火  扩散层  组织  性能  强度  硬度    
Abstract: The microstructure and properties of 5052/AZ31B explosive welded composite plates were studied after annealing at 300 ℃, 350 ℃ and 400 ℃.The results show that magnesium atom is easy to diffuse to the aluminum side during annealing, and the diffusion layer is mainly located at the aluminum side near the interface. With the annealing temperature rising, the diffusion layer becomes thicker. The phase composition at the interface before annealing was Mg matrix, Al matrix, Mg2Al3 and Mg17Al12, and they remained unchanged after annealing at 300 ℃, 350 ℃ and 400 ℃. When the annealing temperature rises from 300 ℃ to 400 ℃, the tensile strength of the composite plate gradually decreases, while the reduction of area and the elongation after fracture increase. The morphology of the tensile fracture shows that the aluminum side of the composite plate presents ductile fracture while the magnesium side presents brittle fracture. The shear strength of the interface bonding zone of the composite plate is respective 50.88 MPa, 33.15 MPa and 19.50 MPa after annealing at 300 ℃, 350 ℃ and 400 ℃,which is significantly lower than that before annealing(98.44 MPa). The hardness of the interface of the composite plate is respectively 158.1HV, 146.3HV and 152.6HV after annealing at 300 ℃, 350 ℃ and 400 ℃, which is significantly higher than that before annealing(129.6HV), and the change of hardness at the magnesium side is great. The high hardness of the interface bonding zone after annealing is due to the formation of the hard and brittle intermetallic compounds Mg2Al3 and Mg17Al12 in the diffusion layer.
Key words:  5052/AZ31B composite plate    annealing    diffusion layer    microstructure    property    strength    hardness
出版日期:  2022-08-10      发布日期:  2022-08-15
ZTFLH:  TG156  
基金资助: 西安市科技创新引导项目(201805032YD10CG16(3));2019 年度西安航空科技创业资金项目(2019-01);“科技助力经济 2020”重点专项项目;长安大学中央高校基本科研业务费专项资金资助 (300102311403)
通讯作者:  *18729052868@163.com;tianxd@chd.edu.cn   
作者简介:  张振,2019年6月于陕西理工大学获得工学学士学位。现为长安大学材料科学与工程学院硕士研究生,在田晓东副教授的指导下进行研究。目前主要研究领域为先进金属基复合材料。
丁旭,西安航空学院教授、硕士研究生导师。1997年西北工业大学机械电子专业本科毕业,2004年西北工业大学材料学专业硕士毕业。曾在西北有色金属研究院、西部材料股份有限公司任职,2014年到西安航空学院工作。主要研究方向:钛和镁轻金属、高温合金、难熔金属、复合材料的制备、加工以及材料成型与过程控制研究和产业化。发表学术论文100余篇,国家和行业标准6项,授权发明专利8项,实用新型专利12项。
引用本文:    
张振, 丁旭, 田晓东, 史豪杰, 罗海龙. 退火温度对5052/AZ31B爆炸复合板组织与性能的影响[J]. 材料导报, 2022, 36(15): 21040005-6.
ZHANG Zhen, DING Xu, TIAN Xiaodong, SHI Haojie, LUO Hailong. Effect of Annealing Temperature on Microstructure and Properties of 5052/AZ31B Explosive Composite Plate. Materials Reports, 2022, 36(15): 21040005-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040005  或          http://www.mater-rep.com/CN/Y2022/V36/I15/21040005
1 Priel E, Ungarish Z, Navi N U. Journal of Materials Processing Technology, 2016, 236(236), 103.
2 Yan Y B, Zhang Z W, Shen W, et al. Materials Science and Engineering A, 2009, 527(9), 2241.
3 Li Y J, Liu P, Wang J, et al. Vacuum, 2007, 82(1), 15.
4 Wu K, Chang H, Maawad E, et al. Materials Science and Engineering A, 2010, 527(13), 3073.
5 Jiang Y F. Investigation on hardening mechanism in the TA2/316L explosive welding bonding.Master's Thesis, Shenyang Ligong University, China, 2015(in Chinese).
姜岳峰. TA2/316L爆炸焊接结合区硬化机理研究. 硕士学位论文, 沈阳理工大学, 2015.
6 Fan Y X, Wu Z S, Li Y, et al. Hot Working Technology, 2018, 47(4), 134(in Chinese).
范祎欣, 吴志生, 李岩, 等.热加工工艺, 2018, 47(4), 134.
7 Wu J Q. Study on the interface microstructure and mechanical properties for the Mg/Ti composite plates with explosive welding.Master's Thesis, Taiyuan University of Technology, China, 2015(in Chinese).
武佳琪. 镁/钛异种金属爆炸焊接界面微观组织及性能的研究. 硕士学位论文, 太原理工大学, 2015.
8 Zhai W G. Properties and bonding interface microstructure of titanium-steel and copper-steel composite plates with explosive welding. Master's Thesis, Nanjing University of Aeronautics and Astronautics,China, 2013(in Chinese).
翟伟国. 钛-钢和铜-钢爆炸复合板的性能及界面微观组织结构.硕士学位论文, 南京航空航天大学, 2013.
9 Zhang N, Wang W X, Cao X Q, et al. Materials and Design, 2015, 65, 1100.
10 Wu Q, Yang S Y, Jiang W, et al. Rare Metal Materials and Engineering, 2017, 46(6), 1662(in Chinese).
吴琼, 杨素媛, 蒋雯, 等.稀有金属材料与工程, 2017, 46(6), 1662.
11 Murray J L. Bulletin of Alloy Phase Diagrams, 1982, 3(1), 61.
12 Yan Y B, Wang J H, Shen X P, et al. The Chinese Journal of Nonferrous Metals, 2010, 20(4), 674(in Chinese).
颜银标, 王进华, 申小平,等. 中国有色金属学报, 2010, 20(4), 674.
13 Liu K C. Study on diffusion behavior and mechanical properties of alumi-nium-magnesium and magnesium-scandium. Master's Thesis, Guangxi University, China, 2019(in Chinese).
刘科成. Al-Mg及Mg-Sc扩散行为和力学性能的研究. 硕士学位论文, 广西大学, 2019.
14 Wang H, Liu L M, Liu X J. Transactions of the China Welding Institution, 2005(7),6(in Chinese).
王恒, 刘黎明, 柳绪静.焊接学报, 2005(7), 6.
15 Macwan A, Jiang X Q, Li C, et al. Materials Science and Engineering A, 2013, 587, 344.
16 Cheng K M, Xu H X, Ma B C, et al. Journal of Alloys and Compounds, 2019, 810, 151878.
17 Zhou Y G, Yan Z F, Wang Z N, et al. Hot Working Technology, 2016, 45(8), 93(in Chinese).
周亚国, 闫志峰, 王钟楠,等. 热加工工艺, 2016, 45(8), 93.
18 Jiang H T, Yan X Q, Liu J X, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(3), 697.
19 Durgutlu A, Gülenç B, Findik F. Materials and Design, 2005, 26(6), 497.
20 Li J P, Li Z P, Mao D H, et al. Journal of Central South University (Science and Technology), 2012, 43(10), 3793(in Chinese).
李建平, 李志鹏, 毛大恒, 等.中南大学学报(自然科学版), 2012, 43(10), 3793.
[1] 梁龙, 张鑫, 刘巧玲. 浆体流变性能对超高延性水泥基材料性能的影响[J]. 材料导报, 2023, 37(5): 21070107-7.
[2] 金浏, 贾立坤, 余文轩, 张仁波, 杜修力. 低温下混凝土劈裂拉伸破坏及尺寸效应试验研究[J]. 材料导报, 2023, 37(5): 21080041-7.
[3] 李双捷, 马昆林, 龙广成, 谢友均, 曾晓辉. 持续荷载作用下砂浆裂缝的自修复性能及其评价指标[J]. 材料导报, 2023, 37(5): 21070056-9.
[4] 李嘉, 秦时髦, 张恒龙. 基于STC-SMA层间性能的沥青混合料设计与评估[J]. 材料导报, 2023, 37(5): 21080246-8.
[5] 朱艳春, 邵珠彩, 罗媛媛, 黄志权, 牛勇, 秦建平. Ti2AlNb合金应变速率敏感指数和应变硬化指数与变形参数和晶粒尺寸关系研究[J]. 材料导报, 2023, 37(5): 21070259-6.
[6] 林方敏, 邢梅, 唐立志, 武学俊, 章小峰, 黄贞益. Fe-Mn-Al-C系低密度钢及其强韧化机制研究进展[J]. 材料导报, 2023, 37(5): 21050094-8.
[7] 史雪飞, 杨正海, 张永振. 系统弹性对载流摩擦副无电条件下摩擦磨损性能的影响[J]. 材料导报, 2023, 37(5): 21080045-5.
[8] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[9] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[10] 孙怡坤, 朱召贤, 王涛, 牛波, 龙东辉. 耐400 ℃高温氰酸酯导电胶的制备与性能[J]. 材料导报, 2023, 37(5): 21060190-5.
[11] 章国涛, 高艳, 刘书利, 孟德喜, 高娜燕, 郑勇. 低介电损耗Ca1-xSrxMgSi2O6微波介质陶瓷的结构和介电性能[J]. 材料导报, 2023, 37(4): 21080295-5.
[12] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[13] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[14] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[15] 郝思洁, 褚强, 李文亚, 杨夏炜, 邹阳帆. 电脉冲处理对金属材料组织、力学性能影响的研究进展[J]. 材料导报, 2023, 37(4): 21030039-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed