Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21090175-8    https://doi.org/10.11896/cldb.21090175
  高分子与聚合物基复合材料 |
冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能
周亚丽1, 雷西萍1,2,*, 樊凯1, 于婷1, 关晓琳3
1 西安建筑科技大学材料科学与工程学院,西安 710055
2 陕西省纳米材料与技术重点实验室,西安 710055
3 西北师范大学化学化工学院,兰州 730070
Preparation and Electrochemical Properties of Freeze-Drying-Assisted One-step Carbonization-Activated Chitosan-based Porous Carbon
ZHOU Yali1, LEI Xiping1,2,*, FAN Kai1, YU Ting1, GUAN Xiaolin3
1 School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055,China
2 Key Laboratory of Nanomaterials and Technology, Shaanxi Province, Xi'an 710055, China
3 School of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
下载:  全 文 ( PDF ) ( 25099KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用冷冻干燥辅助一步碳化-活化法制备了壳聚糖基多孔碳(CSPC),利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、拉曼光谱分析仪(Raman)、X射线光电子能谱仪(XPS)和氮气吸脱附实验(BET)对不同活化剂比例下材料的结构形貌及化学组成进行表征,探究了其电化学性能。结果表明:CSPC表面粗糙,比表面积高达2 178.9 m2·g-1,具有显著的分级多孔结构和较高的中孔率,并含氮、氧等杂原子,赋予电极材料较好的导电性、良好的润湿性和高离子扩散率,使其表现出优异的电容特性。当活化剂与壳聚糖质量比为1∶1时,多孔碳(CSPC-1.0)在0.5 A·g-1的电流密度下,比容量高达386.0 F·g-1,当电流密度为20 A·g-1时,其比电容仍然高达319.6 F·g-1,表现出优异的倍率性能;同时,在5 A·g-1的电流密度下,电极经过10 000次充放电循环后容量保持率为94.4%,表现出优异的循环稳定性。以CSPC-1.0为电极活性物质组装成对称超级电容器,在功率密度300 W·kg-1时,其能量密度可达15.5 Wh·kg-1。本工作制备的具有分级结构的壳聚糖基多孔碳作为储能材料具有广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周亚丽
雷西萍
樊凯
于婷
关晓琳
关键词:  壳聚糖  多孔碳  冷冻干燥  电化学性能  超级电容器    
Abstract: Chitosan-based porous carbon materials (CSPC) were prepared by a one-step carbonization-activation supplemented with a freeze-drying method. The structural morphology and chemical composition of the materials prepared at different activator ratios were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and nitrogen adsorption and desorption test (BET), and their electrochemical properties were investigated. The test results show that CSPC had a rough surface with a high specific surface area of 2 178.9 m2·g-1, a hierarchical porous structure and a high mesoporosity, and was rich in heteroatoms such as nitrogen and oxygen, which endows the electrode material with good electrical conductivity, good wettability and fast ion diffusion performance, enabling it to exhibit excellent capacitive properties. When the mass ratio of activator to chitosan was 1∶1, the specific capacity of porous carbon (CSPC-1.0) was as high as 386.0 F·g-1 at a current density of 0.5 A·g-1, and when the current density was 20 A·g-1, its specific capacitance was still as high as 319.6 F·g-1, showing excellent rate performance; meanwhile, at a current density of 5 A·g-1, the electrode had 94.4% specific capacity retention after 10 000 charge/discharge cycles, showing excellent cycling stability. A symmetrical supercapacitor assembled with CSPC-1.0 as the electrode active substance could achieve an energy density of 15.5 Wh·kg-1 at a power density of 300 W·kg-1. The chitosan-based porous carbon with a hierarchical structure prepared in this work has a promising application as an energy storage material.
Key words:  chitosan    porous carbon    freeze-drying    electrochemical property    supercapacitor
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  TB332  
基金资助: “超级电容器电极材料设计与应用”团队建设资金;生态环境相关高分子材料教育部重点实验室开放基金(KF-18-01)
通讯作者:  *雷西萍,西安建筑科技大学材料科学与工程学院教授、博士研究生导师。2002年兰州大学化学化工学院化学系本科毕业,2007年兰州大学化学化工学院高分子研究所博士毕业,目前主要从事超级电容器等方面的研究工作。发表论文50余篇,包括Polymer for Advanced Technology、Ceramics International、Fuel等。sxxhyleixiping@163.com   
作者简介:  周亚丽,2017年6月于长安大学获得工学学士学位,现为西安建筑科技大学材料科学与工程学院硕士研究生,在雷西萍教授的指导下进行研究。目前主要研究领域为超级电容器电极材料。
引用本文:    
周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
ZHOU Yali, LEI Xiping, FAN Kai, YU Ting, GUAN Xiaolin. Preparation and Electrochemical Properties of Freeze-Drying-Assisted One-step Carbonization-Activated Chitosan-based Porous Carbon. Materials Reports, 2023, 37(5): 21090175-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090175  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21090175
1 Selvaraj T, Perumal V, Khor S F, et al. Materials Research Bulletin, 2020, 126, 110839.
2 Mu J, Wong S I, Li Q, et al. Journal of Alloys and Compounds, 2020, 832, 154950.
3 Gu Y Y, Miao L, Yin Y, et al. Chinese Chemical Letters, 2021, 32(4), 1491.
4 Maria S R F R, Jaya N V, Boopathi G, et al. Materials Chemistry and Physics, 2020, 240, 122151.
5 Lu H, Zhao X S. Sustainable Energy & Fuels, 2017, 1(6), 1265.
6 Kaczmarek-Szczepańska B, Miłek O, Michalska-Sionkowska M, et al. Materials Letters, 2021, 292, 129667.
7 Evans C, Morimitsu Y, Hisadome T, et al. Journal of Bioscience and Bioengineering, 2021, 132(1), 81.
8 Śliwak A, Díez N, Miniach E, et al. Journal of Applied Electrochemistry, 2016, 46(6), 667.
9 Deng X, Zhao B, Zhu L, et al. Carbon, 2015, 93, 48.
10 Wu Q, Hu J Q, Cao S S, et al. International Journal of Biological Macromolecules, 2020, 155, 131.
11 Gao Y F, Zheng S H, Fu H L, et al. Carbon, 2020, 168, 701.
12 Zhu L F, Shen F, Smith R L, et al. Energy Technology, 2017, 5(3), 452.
13 Hu X, Xu X H, Zhong R Q, et al. Journal of Electroanalytical Chemistry, 2018, 823, 54.
14 Hwang J Y, Li M P, El-Kady M F, et al. Advanced Functional Materials, 2017, 27(15), 1605745.
15 Miao L, Qian X Y, Zhu D Z, et al. Chinese Chemical Letters, 2019, 30(7), 1445.
16 Wu F M, Gao J P, Zhai X G, et al. Carbon, 2019, 147, 242.
17 Li Y, Liu Q L, Kang D M, et al. Journal of Materials Chemistry A, 2015, 3(42), 21016.
18 Hu Y J, Tong X, Zhuo H, et al. RSC Advances, 2016, 6(19), 15788.
19 You B, Kang F, Yin P Q, et al. Carbon, 2016, 103, 9.
20 Hao P, Zhao Z H, Leng Y H, et al. Nano Energy, 2015, 15, 9.
21 Xi Y L, Cao J M, Li J Z, et al. Journal of Energy Storage, 2021, 37, 102470.
22 Gang B J, Zhang F, Li X L, et al. Journal of Energy Storage, 2021, 33, 102132.
23 Roberts A D, Wang S X, Li X, et al. Journal of Materials Chemistry A, 2014, 2(42), 17787.
24 Yeo H, Jung J, Song H J, et al. Microporous and Mesoporous Materials, 2017, 245, 138.
25 Li Y. Preparation of nano-hierarchical porous carbon and study on electrochemical performance. Master's Thesis, Shanghai Jiaotong University, China, 2016 (in Chinese).
李玥. 纳米分级孔碳电极材料的制备和储能特性的研究 . 硕士学位论文, 上海交通大学, 2016.
26 Liu X, Du W M, Zhang Z Y, et al. Electronic Components and Materials, 2019, 38(9), 28 (in Chinese).
刘欣, 杜卫民, 张子怡, 等. 电子元件与材料, 2019, 38(9), 28.
27 Valente N J M, Teixeira J G, Almeida I. Bioresource Technology, 2011, 102(3), 2781.
28 Zheng L H, Chen M H, Liang S X , et al. Diamond and Related Materials, 2021, 113, 108267.
29 Wang S N, Dong L N, Li Z Y, et al. International Journal of Biological Macromolecules, 2020, 164, 4095.
30 Yoo Y J, Park G D, Kang Y C, et al. Chemical Engineering Journal, 2019, 365, 193.
31 Hou L Q, Yang W, Li Y, et al. Chemical Engineering Journal, 2021, 417, 129289.
32 Zhou Y H, Ren X, Du Y Y, et al. Electrochimica Acta, 2020, 355, 136801.
33 Primo A, Atienzar P, Sanchez E, et al. Chemical Communications, 2012, 48(74), 9254.
34 Gopalakrishnan A, Badhulika S. Journal of Energy Storage, 2021, 38, 102533.
35 Liu Z L, Hu J G, Shen F, et al. Journal of Power Sources, 2021, 497, 229880.
36 Sun G L, Ma L Y, Ran J B, et al. Electrochimica Acta, 2016, 194, 168.
37 Lin T Q, Chen I W, Liu F X, et al. Science, 2015, 350(6267), 1508.
38 Hu Y J, Tong X, Zhuo H, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(10), 8663.
39 Li J S, Lu W B, Yan Y S, et al. Journal of Materials Chemistry A, 2017, 5(22), 11271.
40 Xu M, Liu Y H, Yu Q, et al. Chinese Chemical Letters, 2021, 32(1), 184.
41 Wu X L, Wang Y H, Zhong R Q, et al. Diamond and Related Materials, 2021, 116, 108447.
42 Wu L, Cai Y M, Wang S Z, et al. International Journal of Hydrogen Energy, 2021, 46(2), 2432.
43 Sheng L Z, Zhao Y Y, Hou B Q, et al. New Carbon Materials, 2021, 36(1), 179.
44 Wang S Y, Hu Z W, Pan Z M, et al. Journal of Alloys and Compounds, 2021, 876, 160203.
45 Jiang Y, Li J, Jiang Z, et al. Carbon, 2021, 175, 281.
46 Taer E, Afdal Y D, Amri A, et al. Materials Today:Proceedings, 2021, 44, 3346.
47 Song Y, Qu W W, He Y H, et al. Journal of Energy Storage, 2020, 32, 101877.
48 Liu J, Ma L Y, Zhao Y, et al. Chemical Engineering Journal, 2021, 411, 128573.
49 Khalafallah D, Quan X Y, Ouyang C, et al. Renewable Energy, 2021, 170, 60.
50 Gopalakrishnan A, Badhulika S. Journal of Power Sources, 2020, 480, 228830.
51 Chen T T, Luo L, Luo L C, et al. Renewable Energy, 2021, 175, 760.
52 Yan Q, Jiang Y, He L , et al. Journal of Materials Chemistry A, 2019, 7, 6021.
53 Dai C C, Wan J F, Geng W D, et al. Journal of Solid State Electroche-mistry, 2017, 21(10), 2929.
54 Sun Y, Xue J J, Dong S Y, et al. Journal of Materials Science, 2020, 55(12), 5166.
55 Song P, Shen X P, He X M, et al. Cellulose, 2019, 26(2), 1195.
56 Gong Y N, Li D L, Fu Q, et al. ACS Applied Energy Materials, 2020, 3(2), 1585.
[1] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[2] 白小杰, 宋生南, 卓祖优, 刘海雄, 陈燕丹. 丝瓜络基3D多级孔结构掺氮活性炭的制备及储能特性[J]. 材料导报, 2023, 37(5): 21080011-7.
[3] 闫星雨, 但年华, 陈一宁, 但卫华, 李正军. 胶原基复合止血材料的研究进展及展望[J]. 材料导报, 2023, 37(5): 21030008-9.
[4] 盛蕊, 唐婷婷, 田敏, 袁舒慧, 张苏, 范壮军. 耐热酚醛树脂基活性炭的制备及其超级电容器性能研究[J]. 材料导报, 2023, 37(4): 21040224-7.
[5] 刘珊, 廖磊, 魏莉, 李炫妮, 曹磊, 王鑫. 壳聚糖交联腐殖酸凝胶球吸附渗滤液中重金属离子研究[J]. 材料导报, 2023, 37(3): 21040317-8.
[6] 杨卫, 徐呈祥, 陈则胜, 聂正稳, 董兵海. 基于生物聚合物伤口敷料的研究及应用进展[J]. 材料导报, 2022, 36(Z1): 21100217-5.
[7] 刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
[8] 郭生伟, 王鑫, 薛敏, 李丹, 王固霞. 声化学法制备巯基壳聚糖/黄芪油微胶囊[J]. 材料导报, 2022, 36(6): 21010096-5.
[9] 侯璞, 张九州, 寻之玉, 霍鹏飞. 聚氨酯基聚合物电解质的应用进展[J]. 材料导报, 2022, 36(5): 20060009-9.
[10] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[11] 惠爱平, 马梦婷, 杨芳芳, 康玉茹, 王爱勤. 季铵化壳聚糖改性ZnO/凹凸棒石纳米复合材料及其抗菌性能[J]. 材料导报, 2022, 36(3): 21110131-7.
[12] 徐英卓, 王秀凯, 常麟晖, 陈步明, 黄惠, 何亚鹏, 郭忠诚. 热处理对大变形量Zn-1.65Cu-0.15Ti合金的组织和性能的影响[J]. 材料导报, 2022, 36(23): 21030294-7.
[13] 王雅君, 白秋红, 伍根成, 王正, 李聪, 申烨华. 纳米纤维素基复合材料及其用于柔性储能器件的研究进展[J]. 材料导报, 2022, 36(23): 21010198-7.
[14] 朋许杰, 李建军, 曹瑞昌, 戎鑫, 李梦, 刘银. 磁性壳聚糖吸附剂的季铵盐改性及磷吸附性能[J]. 材料导报, 2022, 36(21): 21060259-7.
[15] 胡竟志, 徐照华, 沈超, 谢科予. 三维打印技术在电化学储能器件中的应用研究进展[J]. 材料导报, 2022, 36(20): 20100151-11.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed