Preparation and Electrochemical Properties of Freeze-Drying-Assisted One-step Carbonization-Activated Chitosan-based Porous Carbon
ZHOU Yali1, LEI Xiping1,2,*, FAN Kai1, YU Ting1, GUAN Xiaolin3
1 School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055,China 2 Key Laboratory of Nanomaterials and Technology, Shaanxi Province, Xi'an 710055, China 3 School of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
Abstract: Chitosan-based porous carbon materials (CSPC) were prepared by a one-step carbonization-activation supplemented with a freeze-drying method. The structural morphology and chemical composition of the materials prepared at different activator ratios were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and nitrogen adsorption and desorption test (BET), and their electrochemical properties were investigated. The test results show that CSPC had a rough surface with a high specific surface area of 2 178.9 m2·g-1, a hierarchical porous structure and a high mesoporosity, and was rich in heteroatoms such as nitrogen and oxygen, which endows the electrode material with good electrical conductivity, good wettability and fast ion diffusion performance, enabling it to exhibit excellent capacitive properties. When the mass ratio of activator to chitosan was 1∶1, the specific capacity of porous carbon (CSPC-1.0) was as high as 386.0 F·g-1 at a current density of 0.5 A·g-1, and when the current density was 20 A·g-1, its specific capacitance was still as high as 319.6 F·g-1, showing excellent rate performance; meanwhile, at a current density of 5 A·g-1, the electrode had 94.4% specific capacity retention after 10 000 charge/discharge cycles, showing excellent cycling stability. A symmetrical supercapacitor assembled with CSPC-1.0 as the electrode active substance could achieve an energy density of 15.5 Wh·kg-1 at a power density of 300 W·kg-1. The chitosan-based porous carbon with a hierarchical structure prepared in this work has a promising application as an energy storage material.
1 Selvaraj T, Perumal V, Khor S F, et al. Materials Research Bulletin, 2020, 126, 110839. 2 Mu J, Wong S I, Li Q, et al. Journal of Alloys and Compounds, 2020, 832, 154950. 3 Gu Y Y, Miao L, Yin Y, et al. Chinese Chemical Letters, 2021, 32(4), 1491. 4 Maria S R F R, Jaya N V, Boopathi G, et al. Materials Chemistry and Physics, 2020, 240, 122151. 5 Lu H, Zhao X S. Sustainable Energy & Fuels, 2017, 1(6), 1265. 6 Kaczmarek-Szczepańska B, Miłek O, Michalska-Sionkowska M, et al. Materials Letters, 2021, 292, 129667. 7 Evans C, Morimitsu Y, Hisadome T, et al. Journal of Bioscience and Bioengineering, 2021, 132(1), 81. 8 Śliwak A, Díez N, Miniach E, et al. Journal of Applied Electrochemistry, 2016, 46(6), 667. 9 Deng X, Zhao B, Zhu L, et al. Carbon, 2015, 93, 48. 10 Wu Q, Hu J Q, Cao S S, et al. International Journal of Biological Macromolecules, 2020, 155, 131. 11 Gao Y F, Zheng S H, Fu H L, et al. Carbon, 2020, 168, 701. 12 Zhu L F, Shen F, Smith R L, et al. Energy Technology, 2017, 5(3), 452. 13 Hu X, Xu X H, Zhong R Q, et al. Journal of Electroanalytical Chemistry, 2018, 823, 54. 14 Hwang J Y, Li M P, El-Kady M F, et al. Advanced Functional Materials, 2017, 27(15), 1605745. 15 Miao L, Qian X Y, Zhu D Z, et al. Chinese Chemical Letters, 2019, 30(7), 1445. 16 Wu F M, Gao J P, Zhai X G, et al. Carbon, 2019, 147, 242. 17 Li Y, Liu Q L, Kang D M, et al. Journal of Materials Chemistry A, 2015, 3(42), 21016. 18 Hu Y J, Tong X, Zhuo H, et al. RSC Advances, 2016, 6(19), 15788. 19 You B, Kang F, Yin P Q, et al. Carbon, 2016, 103, 9. 20 Hao P, Zhao Z H, Leng Y H, et al. Nano Energy, 2015, 15, 9. 21 Xi Y L, Cao J M, Li J Z, et al. Journal of Energy Storage, 2021, 37, 102470. 22 Gang B J, Zhang F, Li X L, et al. Journal of Energy Storage, 2021, 33, 102132. 23 Roberts A D, Wang S X, Li X, et al. Journal of Materials Chemistry A, 2014, 2(42), 17787. 24 Yeo H, Jung J, Song H J, et al. Microporous and Mesoporous Materials, 2017, 245, 138. 25 Li Y. Preparation of nano-hierarchical porous carbon and study on electrochemical performance. Master's Thesis, Shanghai Jiaotong University, China, 2016 (in Chinese). 李玥. 纳米分级孔碳电极材料的制备和储能特性的研究 . 硕士学位论文, 上海交通大学, 2016. 26 Liu X, Du W M, Zhang Z Y, et al. Electronic Components and Materials, 2019, 38(9), 28 (in Chinese). 刘欣, 杜卫民, 张子怡, 等. 电子元件与材料, 2019, 38(9), 28. 27 Valente N J M, Teixeira J G, Almeida I. Bioresource Technology, 2011, 102(3), 2781. 28 Zheng L H, Chen M H, Liang S X , et al. Diamond and Related Materials, 2021, 113, 108267. 29 Wang S N, Dong L N, Li Z Y, et al. International Journal of Biological Macromolecules, 2020, 164, 4095. 30 Yoo Y J, Park G D, Kang Y C, et al. Chemical Engineering Journal, 2019, 365, 193. 31 Hou L Q, Yang W, Li Y, et al. Chemical Engineering Journal, 2021, 417, 129289. 32 Zhou Y H, Ren X, Du Y Y, et al. Electrochimica Acta, 2020, 355, 136801. 33 Primo A, Atienzar P, Sanchez E, et al. Chemical Communications, 2012, 48(74), 9254. 34 Gopalakrishnan A, Badhulika S. Journal of Energy Storage, 2021, 38, 102533. 35 Liu Z L, Hu J G, Shen F, et al. Journal of Power Sources, 2021, 497, 229880. 36 Sun G L, Ma L Y, Ran J B, et al. Electrochimica Acta, 2016, 194, 168. 37 Lin T Q, Chen I W, Liu F X, et al. Science, 2015, 350(6267), 1508. 38 Hu Y J, Tong X, Zhuo H, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(10), 8663. 39 Li J S, Lu W B, Yan Y S, et al. Journal of Materials Chemistry A, 2017, 5(22), 11271. 40 Xu M, Liu Y H, Yu Q, et al. Chinese Chemical Letters, 2021, 32(1), 184. 41 Wu X L, Wang Y H, Zhong R Q, et al. Diamond and Related Materials, 2021, 116, 108447. 42 Wu L, Cai Y M, Wang S Z, et al. International Journal of Hydrogen Energy, 2021, 46(2), 2432. 43 Sheng L Z, Zhao Y Y, Hou B Q, et al. New Carbon Materials, 2021, 36(1), 179. 44 Wang S Y, Hu Z W, Pan Z M, et al. Journal of Alloys and Compounds, 2021, 876, 160203. 45 Jiang Y, Li J, Jiang Z, et al. Carbon, 2021, 175, 281. 46 Taer E, Afdal Y D, Amri A, et al. Materials Today:Proceedings, 2021, 44, 3346. 47 Song Y, Qu W W, He Y H, et al. Journal of Energy Storage, 2020, 32, 101877. 48 Liu J, Ma L Y, Zhao Y, et al. Chemical Engineering Journal, 2021, 411, 128573. 49 Khalafallah D, Quan X Y, Ouyang C, et al. Renewable Energy, 2021, 170, 60. 50 Gopalakrishnan A, Badhulika S. Journal of Power Sources, 2020, 480, 228830. 51 Chen T T, Luo L, Luo L C, et al. Renewable Energy, 2021, 175, 760. 52 Yan Q, Jiang Y, He L , et al. Journal of Materials Chemistry A, 2019, 7, 6021. 53 Dai C C, Wan J F, Geng W D, et al. Journal of Solid State Electroche-mistry, 2017, 21(10), 2929. 54 Sun Y, Xue J J, Dong S Y, et al. Journal of Materials Science, 2020, 55(12), 5166. 55 Song P, Shen X P, He X M, et al. Cellulose, 2019, 26(2), 1195. 56 Gong Y N, Li D L, Fu Q, et al. ACS Applied Energy Materials, 2020, 3(2), 1585.