Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21040283-13    https://doi.org/10.11896/cldb.21040283
  无机非金属及其复合材料 |
静电纺柔性超级电容器电极材料的研究进展
江志威1, 刘呈坤1,*, 吴红2, 毛雪1
1 西安工程大学纺织科学与工程学院,西安 710048
2 陕西省纺织科学研究院,西安 710038
Research Progress of Electrospun Flexible Electrode Materials for Supercapacitors
JIANG Zhiwei1, LIU Chengkun1,*, WU Hong2 , MAO Xue1
1 School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
2 Shaanxi Textile Science Institute, Xi'an 710038, China
下载:  全 文 ( PDF ) ( 34934KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 柔性超级电容器具有充放电速度快、功率密度高和能量密度高等优点,已成为智能可穿戴设备的理想供能器件。其中,优异的电化学性能和良好的柔韧性是供能器件追求的关键性能指标,而电极材料是其中的核心部分。电极材料的制备方法有沉积法、纺丝法、喷涂法、涂覆法和3D打印等,其中,纺丝法中的静电纺丝技术工艺简单、纤维形貌可控性强,且制备的纤维比表面积大、孔隙率高、柔性好,经过碳化处理后,不需要粘结剂就可直接作为超级电容器的电极材料。本文综述了近年来常规和新型静电纺柔性电极材料在超级电容器领域应用的最新研究进展,并对其进行了分类,对比了不同种类电极材料的制备方法和后处理工艺。据文献资料报道,基于静电纺纳米纤维膜碳化处理后的电极材料具有大的比表面积和含碳率,通过后处理优化材料的孔结构或者在表面负载金属氧化物,都可以很好地提升其电化学性能,实现其使用效能。除了前驱体原料外,纳米纤维的形貌、预氧化和碳化温度、升温速率,以及通过活化等后处理形成的孔结构等因素都会对电极材料的柔性产生极大影响。本文通过对电极材料的分类、对新材料的介绍,为研究人员开发和使用新材料提供一个方向。此外,本文对提升电极材料电化学性能的诸多方法以及电极材料产生柔性的原因进行了总结,可以为研究人员开发新型高效的柔性超级电容器提供帮助。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
江志威
刘呈坤
吴红
毛雪
关键词:  静电纺丝  纳米纤维  电极材料  柔性  超级电容器    
Abstract: Because of the advantages of fast charge and discharge speed, high power density and high energy density, flexible supercapacitors have become an ideal energy supply device for smart wearable devices. Good electrochemical performance and flexibility are considered as the key properties of the device for energy supply, and the electrode material is its core element. There are many methods to prepare the electrode materials, such as deposition method, spinning method, spraying method, coating method, 3D printing method, etc. Among them, electrospinning is a simple process, and it's feasible to control fiber morphology; meanwhile, electrospun nanofibers have a large specific surface area, high porosity and good flexibility, which can be directly used as an ideal electrode material for supercapacitors without binder after carbonization. In this article, we summarize the latest research progress of conventional and new electrospun flexible electrode materials in supercapacitors in recent years, classify the electrode materials, and then compare the preparation methods and post-treatment processes of different kinds of electrode materials. It is concluded that the carbonized electrospun nanofiber membrane as the electrode material has large specific surface area and high carbon content. The optimized pore structure of the material with post-treatment or the metal oxide loaded on the surface of the material can improve its electrochemical performance and realize its use efficiency. The flexibility of electrode materials is not only related to the precursor material, but also greatly affected by the uniformity of nanofiber morphology, pre-oxidation and carbonization temperature, and heating rate, as well as the pore structure formed through post-treatment such as activation. The classification of electrode materials and the introduction of new materials can provide a direction for researchers to develop and use new materials. Besides, the summary of the methods to improve the electrochemical performance of electrode materials and the causes of the flexibility of electrode materials can provide help for researchers to develop new and efficient flexible supercapacitors.
Key words:  electrospinning    nanofiber    electrode material    flexibility    supercapacitor
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  O646  
基金资助: 国家自然科学基金(51503168);陕西省创新能力支撑计划-科技资源开放共享平台项目(2020-PT-043)
通讯作者:  *刘呈坤,西安工程大学纺织科学与工程学院教授、硕士研究生导师。2011年在西安交通大学获博士学位。英国曼彻斯特大学访问学者,陕西省青年科技新星。主要研究方向为纺织材料与纺织品设计、纳米纤维材料制备及其多领域应用。授权国家发明专利12件,其中转让4件。以第一或通信作者身份发表论文30余篇,其中SCI/EI收录23篇。liuchengkun@xpu.edu.cn   
作者简介:  江志威,2019年毕业于闽江学院,获得工学学士学位。现为西安工程大学纺织科学与工程学院硕士研究生,在刘呈坤教授的指导下进行研究。目前主要研究领域为纳米纤维与超级电容器电极材料的制备。
引用本文:    
江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
JIANG Zhiwei, LIU Chengkun, WU Hong, MAO Xue. Research Progress of Electrospun Flexible Electrode Materials for Supercapacitors. Materials Reports, 2023, 37(5): 21040283-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040283  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21040283
1 Khan K, Tareen A K, Aslam M, et al. Progress in Solid State Chemistry, DOI: 10. 1016/j. progsolidstchem. 2019. 100254.
2 Li H J, Zuo W S, Ling J J, et al. Tianjin Chemical Industry, 2021, 35(2), 10 (in Chinese).
李红洁, 左武升, 凌嘉杰, 等. 天津化工, 2021, 35(2), 10.
3 Dai L M, Chang D W, Baek J B, et al. Small, 2012, 8(8), 1130.
4 Simon P, Gogotsi Y. Nature Materials , 2020, 19(11), 1151.
5 Simon P, Gggotsi Y. Nature Materials, 2008, 7(11), 845.
6 Song L L, Han Y H, Li Y J, et al. Power Technology, 2019, 43(2), 354 (in Chinese).
宋利黎, 韩颖慧, 李玉娟, 等. 电源技术, 2019, 43(2), 354.
7 Tian X D, Song Y, Xu D F, et al. Chemical Industry and Engineering, 2014, 31(3), 20 (in Chinese)
田晓冬, 宋燕, 徐德芳, 等. 化学工业与工程, 2014, 31(3), 20.
8 Gonzalez A, Goikolea E, Barrena J A, et al. Renewable & Sustainable Energy Reviews, 2016, 58, 1189.
9 Wang Q, Yan J, Fan Z J. Energy & Environmental Science, 2016, 9(3), 729.
10 Guo T Z, Zhou D, Liu W F, et al. Science China-Materials, 2021, 64(1), 27.
11 Frackowiak E. Physical Chemistry Chemical Physics, 2007, 9(15), 1774.
12 Yang H Q, Kou S Q. International Journal of Electrochemical Science, 2019, 14(8), 7811.
13 Wei J Y, Geng S Y, Pitkanen O, et al. ACS Applied Energy Materials, 2020, 3(4), 3530.
14 Lai C L, Zhou Z P, Zhang L F, et al. Journal of Power Sources, 2014, 247, 134.
15 Wang X, Zhang W, Chen M Z, et al. Polymers, DOI: 10. 3390/polym10121306.
16 Chang F C, Yen S H, Wang S H. Materials, 2018, 11(10), 1877.
17 Xiao Y B, He J C, Yuan K, et al. Polymer Materials Science & Engineering, 2021, 37(1), 317 (in Chinese).
肖迎波, 何佳城, 袁凯, 等. 高分子材料科学与工程, 2021, 37(1), 317.
18 Li X Y, Bai T J, Weng X, et al. Process in Chemistry, 2021, 40(6), 3314.
李祥业, 白天娇, 翁昕, 等. 化工进展, 2021, 40(6), 3314.
19 Jayawickramage R A P, Balkus K J, Ferraris J P. Nanotechnology, 2019, 30(35), 355402.
20 Schlee P, Hosseinael O, Baker D, et al. Carbon, 2019, 145, 470.
21 Sun M H, Wang X Z, Pan X, et al. Fuel Processing Technology, 2019, 191, 121.
22 Chen J, Amiri A, Boyd J C, et al. Advanced Functional Materials, DOI: 10. 1002/adfm. 201901425.
23 Dong W J, Wang Z, Zhang Q, et al. Journal of Power Sources, 2019, 419, 137.
24 Le T, Yang Y, Huang Z H, et al. Journal of Power Sources, 2015, 278, 683.
25 Li X L, Chen X Y, Zhao Y J, et al. Electrochimica Acta, DOI: 10. 1016/j. electacta. 2019. 135398.
26 Ma C, Ruan S J, Wang J T, et al. Journal of Colloid and Interface Science, 2018, 531, 513.
27 Zhang L J, Jiang Y Z, Wang L W, et al. Electrochimica Acta, 2016, 196, 189.
28 Kim C, Ngoc B T N, Yang K S, et al. Advanced Materials, 2007, 19(17), 2341.
29 Xiao Y, Xu Y, Zhang K, et al. Carbon, 2020, 160, 80.
30 He G D, Zhu Y, Tian D, et al. Journal of Chemistry of Colleges and Universities, 2018, 39(7), 1349 (in Chinese).
乜广弟, 朱云, 田地, 等. 高等学校化学学报, 2018, 39(7), 1349.
31 Zhou T, Jiang Q T, Wang L, et al. Applied Surface Science, 2018, 456, 827.
32 Zhang Y Z, Zhang W W, Hui S J, et al. Journal of Electronic Materials, 2020, 49(5), 3165.
33 Nie G D, Zhao X W, Jiang J M, et al. Chemical Engineering Journal, DOI: 10. 1016/j. cej. 2020. 126294.
34 Sun J Y, Wang W, Yu D. Journal of Electronic Materials, 2019, 48(6), 3833.
35 Lei D, Li X D, Seo M K, et al. Polymer, 2017, 132, 31.
36 Kim Y I, Samuel E, Joshi B, et al. Chemical Engineering Journal, 2018, 353, 189.
37 Luo G X, Zhang Q K, Luo Y Y, et al. International Journal of Electrochemical Science, 2020, 15(1), 515.
38 Chen X L, Liu X H, Ouyang M Z, et al. Journal of Energy Storage, DOI:10. 1016/j. est. 2019. 100993.
39 Liu H, Yang D H, Wang X Y, et al. Chinese Journal of Inorganic Che-nistry, 2019, 35(11), 1921 (in Chinese).
刘虎, 杨东辉, 王许云, 等. 无机化学学报, 2019, 35(11), 1921.
40 Li Y, Zhu G, Huang H, et al. Journal of Materials Chemistry A, 2019, 7(15), 9040.
41 Bai Z X, Liu S C, Chen P, et al. Nanotechnology, 2020, 31(30), 305705.
42 Choudhary R B, Ansari, Purty B. Journal of Energy Storage, DOI: 10. 1016/j. est. 2020. 101302.
43 Lu C, Chen X. Advanced Materials Technologies, DOI: 10. 1002/admt. 201900564.
44 Zhu J, Zhang Q, Chen H, et al. ACS Applied Materials & Interfaces, 2020, 12(39), 43634.
45 Sun H, Li S, Shen Y, et al. Applied Surface Science, DOI: 10. 1016/j. apsusc. 2019. 144001.
46 Li X, Tian X D, Yang T, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(6), 5742.
47 Ishita I, Singhal R. Journal of Applied Electrochemistry, 2020, 50(8), 809.
48 Cao Y, Tang P Y, Han Y, et al. Journal of Alloys and Compounds, DOI: 10. 1016/j. jallcom. 2020. 155581.
49 Cao Y, Tang P Y, Han Y, et al. Chemistry-A European Journal, 2020, 26(64), 14654.
[1] 黄兵, 刘萍. 金属网格柔性透明导电薄膜研究进展[J]. 材料导报, 2023, 37(5): 21030214-12.
[2] 白小杰, 宋生南, 卓祖优, 刘海雄, 陈燕丹. 丝瓜络基3D多级孔结构掺氮活性炭的制备及储能特性[J]. 材料导报, 2023, 37(5): 21080011-7.
[3] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[4] 盛蕊, 唐婷婷, 田敏, 袁舒慧, 张苏, 范壮军. 耐热酚醛树脂基活性炭的制备及其超级电容器性能研究[J]. 材料导报, 2023, 37(4): 21040224-7.
[5] 石现兵, 王涛, 吕明泽, 赵晋, 韩振邦. 树枝状PVDF纳米纤维膜负载TiO2吸附-光催化降解染料废水[J]. 材料导报, 2023, 37(4): 21060080-6.
[6] 薛云嘉, 刘家臣. 柔性纤维毡的制备及弹性与隔热性能研究[J]. 材料导报, 2023, 37(3): 21030042-6.
[7] 张斌, 徐桂英. 可穿戴热电发电器的研究进展[J]. 材料导报, 2023, 37(2): 20120005-18.
[8] 徐雪珠, 蒙紫薇, 周国富. 纳米纤维素的光电子性能及器件应用综述[J]. 材料导报, 2023, 37(2): 21010134-14.
[9] 孟兆通, 张昌海, 迟庆国, 张天栋. 固体绝缘材料中空间电荷的主要影响因素及抑制方法[J]. 材料导报, 2023, 37(1): 21040316-9.
[10] 张子健, 姜锋, 于春晓. 长碳链聚酰胺PA1012的改性研究进展[J]. 材料导报, 2022, 36(Z1): 21100088-6.
[11] 侯朝霞, 王凯, 屈晨滢, 李思瑶, 王晓慧, 王健, 王美涵. 柔性二次电池的研究进展[J]. 材料导报, 2022, 36(9): 20070276-6.
[12] 张姣娇, 王晓君, 张卓雅. 利用碳纳米纤维/Pt纳米片构建柔性电极用于葡萄糖检测[J]. 材料导报, 2022, 36(9): 21010143-6.
[13] 温泽明, 陈剑英, 王越平, 肖红. 镓基液态金属在可穿戴器件与智能服装上的应用研究进展[J]. 材料导报, 2022, 36(9): 20080043-5.
[14] 魏宁, 铁生年. 功能化碳纳米纤维增强芒硝基相变储能材料的热性能[J]. 材料导报, 2022, 36(6): 21050177-7.
[15] 晋潞潞, 孙婷婷, 王连军, 江莞. n型掺杂不同管径碳纳米管薄膜的热电性能研究及其器件的制备[J]. 材料导报, 2022, 36(6): 21010212-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed