Research Progress of Electrospun Flexible Electrode Materials for Supercapacitors
JIANG Zhiwei1, LIU Chengkun1,*, WU Hong2 , MAO Xue1
1 School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China 2 Shaanxi Textile Science Institute, Xi'an 710038, China
Abstract: Because of the advantages of fast charge and discharge speed, high power density and high energy density, flexible supercapacitors have become an ideal energy supply device for smart wearable devices. Good electrochemical performance and flexibility are considered as the key properties of the device for energy supply, and the electrode material is its core element. There are many methods to prepare the electrode materials, such as deposition method, spinning method, spraying method, coating method, 3D printing method, etc. Among them, electrospinning is a simple process, and it's feasible to control fiber morphology; meanwhile, electrospun nanofibers have a large specific surface area, high porosity and good flexibility, which can be directly used as an ideal electrode material for supercapacitors without binder after carbonization. In this article, we summarize the latest research progress of conventional and new electrospun flexible electrode materials in supercapacitors in recent years, classify the electrode materials, and then compare the preparation methods and post-treatment processes of different kinds of electrode materials. It is concluded that the carbonized electrospun nanofiber membrane as the electrode material has large specific surface area and high carbon content. The optimized pore structure of the material with post-treatment or the metal oxide loaded on the surface of the material can improve its electrochemical performance and realize its use efficiency. The flexibility of electrode materials is not only related to the precursor material, but also greatly affected by the uniformity of nanofiber morphology, pre-oxidation and carbonization temperature, and heating rate, as well as the pore structure formed through post-treatment such as activation. The classification of electrode materials and the introduction of new materials can provide a direction for researchers to develop and use new materials. Besides, the summary of the methods to improve the electrochemical performance of electrode materials and the causes of the flexibility of electrode materials can provide help for researchers to develop new and efficient flexible supercapacitors.
1 Khan K, Tareen A K, Aslam M, et al. Progress in Solid State Chemistry, DOI: 10. 1016/j. progsolidstchem. 2019. 100254. 2 Li H J, Zuo W S, Ling J J, et al. Tianjin Chemical Industry, 2021, 35(2), 10 (in Chinese). 李红洁, 左武升, 凌嘉杰, 等. 天津化工, 2021, 35(2), 10. 3 Dai L M, Chang D W, Baek J B, et al. Small, 2012, 8(8), 1130. 4 Simon P, Gogotsi Y. Nature Materials , 2020, 19(11), 1151. 5 Simon P, Gggotsi Y. Nature Materials, 2008, 7(11), 845. 6 Song L L, Han Y H, Li Y J, et al. Power Technology, 2019, 43(2), 354 (in Chinese). 宋利黎, 韩颖慧, 李玉娟, 等. 电源技术, 2019, 43(2), 354. 7 Tian X D, Song Y, Xu D F, et al. Chemical Industry and Engineering, 2014, 31(3), 20 (in Chinese) 田晓冬, 宋燕, 徐德芳, 等. 化学工业与工程, 2014, 31(3), 20. 8 Gonzalez A, Goikolea E, Barrena J A, et al. Renewable & Sustainable Energy Reviews, 2016, 58, 1189. 9 Wang Q, Yan J, Fan Z J. Energy & Environmental Science, 2016, 9(3), 729. 10 Guo T Z, Zhou D, Liu W F, et al. Science China-Materials, 2021, 64(1), 27. 11 Frackowiak E. Physical Chemistry Chemical Physics, 2007, 9(15), 1774. 12 Yang H Q, Kou S Q. International Journal of Electrochemical Science, 2019, 14(8), 7811. 13 Wei J Y, Geng S Y, Pitkanen O, et al. ACS Applied Energy Materials, 2020, 3(4), 3530. 14 Lai C L, Zhou Z P, Zhang L F, et al. Journal of Power Sources, 2014, 247, 134. 15 Wang X, Zhang W, Chen M Z, et al. Polymers, DOI: 10. 3390/polym10121306. 16 Chang F C, Yen S H, Wang S H. Materials, 2018, 11(10), 1877. 17 Xiao Y B, He J C, Yuan K, et al. Polymer Materials Science & Engineering, 2021, 37(1), 317 (in Chinese). 肖迎波, 何佳城, 袁凯, 等. 高分子材料科学与工程, 2021, 37(1), 317. 18 Li X Y, Bai T J, Weng X, et al. Process in Chemistry, 2021, 40(6), 3314. 李祥业, 白天娇, 翁昕, 等. 化工进展, 2021, 40(6), 3314. 19 Jayawickramage R A P, Balkus K J, Ferraris J P. Nanotechnology, 2019, 30(35), 355402. 20 Schlee P, Hosseinael O, Baker D, et al. Carbon, 2019, 145, 470. 21 Sun M H, Wang X Z, Pan X, et al. Fuel Processing Technology, 2019, 191, 121. 22 Chen J, Amiri A, Boyd J C, et al. Advanced Functional Materials, DOI: 10. 1002/adfm. 201901425. 23 Dong W J, Wang Z, Zhang Q, et al. Journal of Power Sources, 2019, 419, 137. 24 Le T, Yang Y, Huang Z H, et al. Journal of Power Sources, 2015, 278, 683. 25 Li X L, Chen X Y, Zhao Y J, et al. Electrochimica Acta, DOI: 10. 1016/j. electacta. 2019. 135398. 26 Ma C, Ruan S J, Wang J T, et al. Journal of Colloid and Interface Science, 2018, 531, 513. 27 Zhang L J, Jiang Y Z, Wang L W, et al. Electrochimica Acta, 2016, 196, 189. 28 Kim C, Ngoc B T N, Yang K S, et al. Advanced Materials, 2007, 19(17), 2341. 29 Xiao Y, Xu Y, Zhang K, et al. Carbon, 2020, 160, 80. 30 He G D, Zhu Y, Tian D, et al. Journal of Chemistry of Colleges and Universities, 2018, 39(7), 1349 (in Chinese). 乜广弟, 朱云, 田地, 等. 高等学校化学学报, 2018, 39(7), 1349. 31 Zhou T, Jiang Q T, Wang L, et al. Applied Surface Science, 2018, 456, 827. 32 Zhang Y Z, Zhang W W, Hui S J, et al. Journal of Electronic Materials, 2020, 49(5), 3165. 33 Nie G D, Zhao X W, Jiang J M, et al. Chemical Engineering Journal, DOI: 10. 1016/j. cej. 2020. 126294. 34 Sun J Y, Wang W, Yu D. Journal of Electronic Materials, 2019, 48(6), 3833. 35 Lei D, Li X D, Seo M K, et al. Polymer, 2017, 132, 31. 36 Kim Y I, Samuel E, Joshi B, et al. Chemical Engineering Journal, 2018, 353, 189. 37 Luo G X, Zhang Q K, Luo Y Y, et al. International Journal of Electrochemical Science, 2020, 15(1), 515. 38 Chen X L, Liu X H, Ouyang M Z, et al. Journal of Energy Storage, DOI:10. 1016/j. est. 2019. 100993. 39 Liu H, Yang D H, Wang X Y, et al. Chinese Journal of Inorganic Che-nistry, 2019, 35(11), 1921 (in Chinese). 刘虎, 杨东辉, 王许云, 等. 无机化学学报, 2019, 35(11), 1921. 40 Li Y, Zhu G, Huang H, et al. Journal of Materials Chemistry A, 2019, 7(15), 9040. 41 Bai Z X, Liu S C, Chen P, et al. Nanotechnology, 2020, 31(30), 305705. 42 Choudhary R B, Ansari, Purty B. Journal of Energy Storage, DOI: 10. 1016/j. est. 2020. 101302. 43 Lu C, Chen X. Advanced Materials Technologies, DOI: 10. 1002/admt. 201900564. 44 Zhu J, Zhang Q, Chen H, et al. ACS Applied Materials & Interfaces, 2020, 12(39), 43634. 45 Sun H, Li S, Shen Y, et al. Applied Surface Science, DOI: 10. 1016/j. apsusc. 2019. 144001. 46 Li X, Tian X D, Yang T, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(6), 5742. 47 Ishita I, Singhal R. Journal of Applied Electrochemistry, 2020, 50(8), 809. 48 Cao Y, Tang P Y, Han Y, et al. Journal of Alloys and Compounds, DOI: 10. 1016/j. jallcom. 2020. 155581. 49 Cao Y, Tang P Y, Han Y, et al. Chemistry-A European Journal, 2020, 26(64), 14654.