Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21030296-6    https://doi.org/10.11896/cldb.21030296
  无机非金属及其复合材料 |
阴极直接制备铜氧化物-SiO2复合薄膜及其电化学形成机理
辜敏1,2,*, 吴亚珍1,2
1 重庆大学煤矿灾害动力学与控制国家重点实验室,重庆 400044
2 重庆大学资源及安全工程学院,重庆 400044
Direct Electrodeposition and Chemical Formation Mechanism of Copper Oxide-Silica Composite Thin Films
GU Min1,2,*, WU Yazhen1,2
1 State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
2 School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China
下载:  全 文 ( PDF ) ( 5604KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以室温下制备出的nCu2+nCit3-=2∶1的透明稳定的Cu(II)-Cit3--SiO2复合溶胶为电解液,直接在氧化铟锡导电玻璃(ITO)阴极上电沉积得到铜氧化物-SiO2复合薄膜。循环伏安(CV)和X射线衍射(XRD)结果表明,溶胶中Cu2+与吸附在电极上的SiO2溶胶共电沉积形成Cu2O-SiO2凝胶薄膜,XRD和计时安培(CA)结果表明,薄膜中的SiO2量随过电位升高而减少。X射线光电子能谱(XPS)、XRD和能量色散X射线(EDX)结果表明,高过电位下,SiO2和Cu(II)借助析氢生成的OH-共沉积,得到CuO/Cu2O-SiO2薄膜,这与扫描电子显微镜(SEM)图片显示的所得薄膜具有两种不同形貌的颗粒的结果一致。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
辜敏
吴亚珍
关键词:  氧化亚铜-二氧化硅  氧化铜/氧化亚铜-二氧化硅  复合薄膜  复合溶胶  电化学形成    
Abstract: Composited thin films of copper oxide-silica were electrodeposited directly on an ITO substrate at room temperature using Cu(II)-Cit3--SiO2 sol with nCu2+nCit3-of 2∶1 as a electrolyte. Cyclic voltammetry(CV)and X-ray diffraction(XRD)results indicate that Cu2O-SiO2 gel films are formed by copper ions co-deposition with SiO2 sol adsorbed on electrode. The adsorbed amount of SiO2 sol on the ITO electrode decreased with the increases of overpotentials. XRD and chronoamperometric(CA)results show that the adsorption amount of SiO2 in the film decreases with the increase of the overpotential. The results of X-ray photoelectron spectroscopy(XPS), XRD and energy dispersive X-ray(EDX)showed that CuO/Cu2O-SiO2 films were obtained at higher overpotentials, which was consistent with the results of particles with two different morphologies in the films obtained by scanning electron microscopy(SEM). The CuO/Cu2O-SiO2 films are formed by the co-deposition of SiO2 and Cu(II)with OH generated by hydrogen evolution.
Key words:  Cu2O-SiO2    CuO/Cu2O-SiO2    composite film    sol-gel    electrochemical formation
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  TQ153.1+4  
基金资助: 重庆市科技局项目(cstc2018jcyj-yszxX0005;cstc2020yszx-jcyjX0008)
通讯作者:  *辜敏,重庆大学教授、博士研究生导师。1988年于四川师范大学化学系本科毕业,1993年重庆大学物理化学专业硕士毕业,2000年重庆大学采矿工程专业博士毕业。2005年至今在重庆大学工作。目前主要从事电沉积、气体吸附和分离等方面的研究工作。在AIChE J、Electrochim Acta等期刊发表论文90余篇。mgu@cqu.edu.cn   
引用本文:    
辜敏, 吴亚珍. 阴极直接制备铜氧化物-SiO2复合薄膜及其电化学形成机理[J]. 材料导报, 2023, 37(5): 21030296-6.
GU Min, WU Yazhen. Direct Electrodeposition and Chemical Formation Mechanism of Copper Oxide-Silica Composite Thin Films. Materials Reports, 2023, 37(5): 21030296-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030296  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21030296
1 Akhavan O, Tohidi H, Moshfegh A Z. Thin Solid Films, 2009, 517(24), 6700.
2 Ghodselahi T, Vesaghi M A, Shafiekhani A, et al. Applied Surface Science, 2008, 255(2), 2730.
3 Armelao L, Barreca D, Bertapelle M, et al. Thin Solid Films, 2003, 442(1-2), 48.
4 Abdel R M, Roushdy N. Journal of Physics D:Applied Physics, 2009, 42, 015413.
5 Zhu C Q, Panzer M J. Chemistry of Materials, 2014, 26(9), 2960.
6 Zhang X J, Zhang D G, Ni X M, et al. Materials Letters, 2007, 61(1), 248.
7 Wang Y, Jiang T, Meng D, et al. Applied Surface Science, 2014, 317(30), 414.
8 Daltin A L, Bohr F, Chopart J P. Electrochimica Acta, 2009, 54(24), 5813.
9 Zhao W Y, Fu W Y, Yang H B, et al. Crytengcomm, 2011, 13, 2871.
10 Zhang J P, Yu L P. Journal of Materials Science Materials in Electronics, 2014, 25, 5646.
11 Gu Y E, Su X, Du Y, et al. Applied Surface Science, 2010, 256(20), 5862.
12 Dhanasekaran V, Mahalingam T, Chandramohan R. Microscopy Research & Technique, 2011, 74(10), 980.
13 Lim Y F, Chua C S, Lee C J, et al. Physical Chemistry Chemical Physics Pccp, 2014, 16, 25928.
14 Jang J, Chung S, Kang H, et al. Thin Solid Films, 2016, 600(1), 157.
15 Kim S Y, Ahn C H, Lee J H, et al. Applied Materials & Interfaces, 2013, 5(7), 2417.
16 Shacham R, Avnir D, Mandler D. Advanced Materials, 1999, 11(5), 384.
17 Toledano R, Shacham R, Avnir D, et al. Chemistry of Materials, 2008, 20(13), 4276.
18 Li Q, Gu M. Chinese Chemical Letters, 2011, 22(11), 1359.
19 Wu Y Z, Gu M. Chinese Journal of Inorganic Chemistry, 2016, 32(4), 617(in Chinese).
吴亚珍, 辜敏. 无机化学学报, 2016, 32(4), 617.
20 Gu M, Chen Y L, Wu Y Z. Chinese Journal of Inorganic Chemistry, 2017, 33(4), 576(in Chinese).
辜敏, 陈应龙, 吴亚珍. 无机化学学报, 2017, 33(4), 576.
21 Rode S, Henninot C, Vallières C, et al. Journal of the Electrochemical Society, 2004, 151(6), C405.
22 Daniele P G, Ostancoli G, Zerbinati O. Transition Metal Chemisry, 1988, 13, 87.
23 Lizama-Tzec F I, Canché-Canul L, Oskam G. Electrochimica Acta, 2011, 56(25), 9391.
24 Gu M, Yang F Z, Huang L, et al. Acta Chimca Sinica, 2002, 60(11), 1946(in Chinese).
辜敏, 杨防祖, 黄令, 等. 化学学报, 2002, 60(11), 1946.
25 Feng Y Y, Gu M. Electrochimica Acta, 2013, 90(15), 416.
26 Feng Y Y, Gu M, Du Y G. Acta Chimica Sinica, 2012, 70(7), 831(in Chinese).
冯砚艳, 辜敏, 杜云贵. 化学学报, 2012, 70(7), 831.
27 Chen Y L, Gu M. Journal of Materials Protection, 2014, 47(7), 4(in Chinese).
陈应龙, 辜敏. 材料保护, 2014, 47(7), 4.
28 Brinker C J, Scherer G W. Sol-gel science:the physics and chemistry of sol-gel processing, Academic Press, New York, 1990.
29 Scharifker B, Hills G. Electrochimica Acta, 1983, 28(7), 879.
30 Diaz-Droguett D E, Espinoza R, Fuenzalida V M. Applied Surface Science, 2011, 257(10), 4597.
31 Shaikh J S, Pawar R C, Moholkar A V, et al. Applied Surface Science, 2011, 257(9), 4389.
32 Babapour A, Akhavan O, Azimirad R, et al. Nanotechnology, 2006, 17(3), 763.
[1] 于舒睿, 杨继凯, 杨雪, 王国政, 尹笑乾. WO3/CuWO4复合薄膜的制备及光电化学性能[J]. 材料导报, 2023, 37(4): 21070015-6.
[2] 于翔, 桂久青, 宋子豪, 张雪寅, 董献辉, 李玥, 张雅琪. 亲水性PVDF/TiO2复合薄膜的制备及光催化性能[J]. 材料导报, 2021, 35(4): 4023-4027.
[3] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[4] 何亭睿, 王一平, 李雄杰, 陈朋, 胡悫睿, 杨颖, 宁洪龙. 可交联型P(VDF-CTFE-DB)/PMN-PT-Sm纳米复合薄膜的制备及介电和储能性能[J]. 材料导报, 2020, 34(18): 18152-18158.
[5] 黄文成, 张锦国, 袁军, 刘江文. Mg/Nb复合薄膜的结构调控及其对脱氢温度的影响[J]. 《材料导报》期刊社, 2018, 32(7): 1084-1087.
[6] 毛龙, 刘跃军, 白永康, 刘小超. 原位接枝聚合改性LDHs/PCL纳米复合薄膜的制备及氧气阻隔性能*[J]. 《材料导报》期刊社, 2017, 31(18): 43-48.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed