Photoelectronic Properties and Device Applications of Nanocellulose: a Review
XU Xuezhu1,2,*, MENG Ziwei1,2, ZHOU Guofu1,2,3
1 Guangdong Provincial Key Laboratory of Optical Information Materials, Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Photoelectronics, South China Normal University, Guangzhou 510006, China 2 Shenzhen Guohua Photoelectronics Tech. Co., Ltd., Shenzhen 518110, Guangdong, China 3 Academy of Shenzhen Guohua Photoelectronics, Shenzhen 518110, Guangdong, China
Abstract: Cellulose nanocrystals (CNCs) are colloidal and surface-active materials that have been developed rapidly, due to characteristics such as a controlled charge group, high chemical activity, high optical activity, light weight, low cost and environmental friendliness. CNCs are gaining increasing interest in photoelectronic device fields such as conductors, displays, sensors, transistors, radiofrequency devices, generators, light-emitting diodes (LED), etc. Despite all this, there are still many challenges for nanocellulose to be applicable in photoelectronic devices, which has not been reviewed yet. It is worth discussing the scientific problems and technical difficulties of CNCs, e.g., tunability of particle pro-perties (particle dimensions, chemical groups and hydrophilicity), device requirements, and the relationship of the physical/chemical attributes and the devices. This paper introduces the preparation, characteristics and photoelectronic properties (optical transmittance, interference, scattering, liquid crystal chirality, etc.) of nanocellulose, and discusses the applications in solar cells, intelligent responsive/reflective films and optical fibers. We believe this review is helpful to better understand nanocellulose regarding its preparation, micromorphological features, colloidal effects, critical materialization characteristics, and performance. This review also gives a design criterion for devices and a theoretical basis for applications, such as emulsions, films, template materials, energy savers, electrodes, paper electronics, sensors and actuators.
1 Habibi Y, Lucia L A, Rojas O J. Chemical Review, 2010, 110, 3479. 2 Lavoine N, Desloges I, Dufresne A, et al. Carbohydrate Polymers, 2012, 90, 735. 3 Beck-candanedo S, Roman M, Gray D G. Biomacromolecules, 2005, 6, 1048. 4 Iguchi M, Budhiono A. Journal of Materials Science, 2000, 5, 261. 5 Saied H E, Basta A H, Gobran R H. Polymer-Plastics Technology and Engineering, 2004, 43, 797. 6 Azizi Samir M A S, Alloin F, Dufresne A. Biomacromolecules, 2005, 6, 612. 7 Sinharay S, Bousmina M. Progress in Materials Science, 2005, 50, 962. 8 Henriksson M, Berglund L A, Isaksson P, et al. Biomacromolecules, 2008, 9, 1579. 9 Xu X, Liu F, Jiang L, et al. ACS Applied Materials & Interfaces, 2013, 5, 2999. 10 Abdul K H P S, Davoudpour Y, Islam M N, et al. Carbohydrate Polymers, 2014, 99, 649. 11 Sehaqui H, Mushi N E, Morimune S, et al. ACS Applied Materials & Interfaces, 2012, 4, 1043. 12 Tanpichai S, Quero F, Nogi M, et al. Biomacromolecules, 2012, 13, 1340. 13 Xu X, Liu F, Jiang L, et al. ACS Applied Materials & Interfaces, 2013, 5, 2999. 14 Xu X, Hsieh Y. Nanoscale, 2019, 11, 11719. 15 Sacui I A, Nieuwendaal R C, Burnett D J, et al. ACS Applied Materials & Interfaces, 2014, 6, 6127. 16 Guhados G, Wan W, Hutter J L. Langmuir, 2005, 21, 6642. 17 Hsieh Y C, Yano H, Nogi M, et al. Cellulose, 2008, 15, 507. 18 Quiévy N, Jacquet N, Sclavons M, et al. Polymer Degradation and Stability, 2010, 95, 306. 19 Wgberg L, Decher G, Norgren M, et al, Langmuir, 2008, 24, 784. 20 Tejado A, Alam M N, Antal M, et al. Cellulose, 2012, 19, 831. 21 Spence K L, Venditti R A, Rojas O J, et al. Cellulose, 2011, 18, 1097. 22 Henriksson M, Henriksson G, Berglund L A, et al. European Polymer Journal, 2007, 43, 3434. 23 Isogai A, Saito T, Fukuzumi H. Nanoscale, 2011, 3, 71. 24 Jiang F, Han S, Hsieh Y L. RSC Advance, 2013, 3, 12366. 25 Lagerwall J P F, Schütz C, Salajkova M, et al. NPG Asia Materials, 2014, 6, 1. 26 Jiang F, Hsieh Y L. Carbohydrate Polymers, 2013, 95, 32. 27 Wang Q, Zhao X, Zhu J Y. Industrial & Engineering Chemistry Research, 2014, 53, 11007. 28 Isogai A, Zhou Y. Current Opinion in Solid State and Materials Science, 2019, 23, 101. 29 Yu H Y, Zhang H, Song M L, et al. ACS Applied Materials & Interfaces, 2017, 9, 43920. 30 Tuzzin G, Godinho M, Dettmer A, et al. Carbohydrate Polymers, 2016, 148, 69. 31 Cherian B M, Pothan L A, Nguyen-Chung T, et al, Journal of Agricultural and Food Chemistry, 2008, 56, 5617. 32 Xu X, Zhou J, Jiang L, et al. Nanoscale, 2016, 8, 12294. 33 Lahiji R R, Xu X, Reifenberger R, et al. Langmuir, 2010, 26, 4480. 34 Klemm D, Kramer F, Moritz S, et al. Angewandte Chemie International Edition, 2011, 50, 5438. 35 Xu X, Zhou J, Jiang L, et al. Materials Letters, 2013, 109, 175. 36 Carlmark A, Malmström E E. Biomacromolecules, 2003, 4, 1740. 37 Zhang Z, Tam K C, Sèbe G, et al. Carbohydrate Polymers, 2018, 199, 603. 38 Morandi G, Heath L, Thielemans W. Langmuir, 2009, 25(14), 8280. 39 Xu X, Wang H, Jiang L, et al. Macromolecules, 2014, 47, 3409. 40 Kelly J A, Giese M, Shopsowitz K E, et al. Accounts of Chemical Research, 2014, 47, 1088. 41 Yan Q, Wang L J, Wang Y Q, et al. Scientia Silvae Sinica, 2019, 55, 152. 42 Cheung C C Y, Giese M, Kelly J A, et al. ACS Macro Letters, 2013, 2, 1016. 43 Yang X, Cranston E D. Chemistry of Materials, 2014, 35, 6016. 44 Dujardin E, Blaseby M, Mann S. Journal of Materials Chemistry, 2003, 13, 696. 45 Zhang Y P, Chodavarapu V P, Kirk A G, et al. Sensors and Actuators B:Chemical, 2013, 176, 692. 46 Khan M K, Bsoul A, Walus K, et al, Angewandte Chemie International Edition, 2015, 127, 4378. 47 Frka-Petesic B, Kelly J A, Jacucci G, et al. Advanced Materials, 2020, 32, 1. 48 Saito T, Uematsu T, Kimura S, et al. Soft Matter, 2011, 7, 8804 . 49 Dong H, Snyder J F, Tran D T, et al. Carbohydrate Polymers, 2013, 95, 760. 50 Wang M S, Jiang F, Hsieh Y L, et al. Journal of Materials Chemistry B, 2014, 2, 6226. 51 Hu L, Zheng G, Yao J, et al. Energy & Environmental Science, 2013, 6, 513. 52 Wang J, Cheng Q, Lin L, et al. ACS Nano, 2014, 8(3), 2739. 53 Tang H, Butchosa N, Zhou Q. Advanced Materials, 2015, 27, 2070. 54 Zhou Y, Fuentes-Hernandez C, Khan T M, et al. Scientific Reports, 2013, 3, 1536. 55 Li Z. Journal of Naval University of Engineering, 2002, 14, 19. 56 Sun H T, Coehoorn R, Zhou G F. Journal of South China Normal University (Natural Science Edition), 2017, 49, 21. 57 Cupelli D, Nicoletta F P, Manfredi S, et al. Solar Energy Materials & Solar Cells, 2009, 93, 2008. 58 Zhang B, Lin X, You Y, et al. Optics Express, 2019, 27, 13516. 59 Ha N Y, Ohtsuka Y, Jeong S M, et al. Nature Materials, 2008, 7, 43. 60 Khandelwal H A, Schenning J, Debije M G. Advanced Energy Materials, 2017, 7, 1. 61 Gu M, Jiang C, Liu D, et al. ACS Applied Materials & Interfaces, 2016, 8, 32565. 62 Yao K, Meng Q, Bulone V, et al. Advanced Materials, 2017, 29, 1. 63 Xu X, Zhou H, Zhou G, et al. ACS Applied Bio Materials, 2020, 3, 4522. 64 Liu Y, Wu P. Advanced Functional Materials, 2020, 30, 1. 65 Dong Y, Bazrafshan A, Pokutta A, et al. ACS Nano, 2019, 13, 9918. 66 Almohammadi H, Bagnani M, Mezzenga R. Nature Communications, 2020, 11, 1. 67 Ureña-Benavides E E, Ao G, Davis V A, et al. Macromolecules, 2011, 44, 8990. 68 Liu Q, Smalyukh I I. Science Advances, 2017, 3, e1700981. 69 Li T, Xu X, Li C N, et al. Advanced Science, 2020, 1902439, 1. 70 Kang C Y, Lin C H, Lin C H, et al. Advanced Science, 2019, 1902230, 1.