Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 21010134-14    https://doi.org/10.11896/cldb.21010134
  高分子与聚合物基复合材料 |
纳米纤维素的光电子性能及器件应用综述
徐雪珠1,2,*, 蒙紫薇1,2, 周国富1,2,3
1 华南师范大学华南先进光电子研究院,彩色动态电子纸显示技术研究所,广东省光信息材料与技术重点实验室,广州 510006
2 深圳市国华光电科技有限公司,广东 深圳 518110
3 深圳市国华光电研究院,广东 深圳 518110
Photoelectronic Properties and Device Applications of Nanocellulose: a Review
XU Xuezhu1,2,*, MENG Ziwei1,2, ZHOU Guofu1,2,3
1 Guangdong Provincial Key Laboratory of Optical Information Materials, Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Photoelectronics, South China Normal University, Guangzhou 510006, China
2 Shenzhen Guohua Photoelectronics Tech. Co., Ltd., Shenzhen 518110, Guangdong, China
3 Academy of Shenzhen Guohua Photoelectronics, Shenzhen 518110, Guangdong, China
下载:  全 文 ( PDF ) ( 9630KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米纤维素是一种近年来发展迅猛的具有胶体活性的材料,它具有携带可控电荷基团、化学活性高、光学活性高、质量轻、价格低及环境友好等特点,正在快速占领导电材料、显示器、传感器、晶体管、射频器件、发电机、发光二极管等光电子器件及关键材料领域的重要地位。目前,纳米纤维素在光电子材料器件的应用依然存在不少挑战,且纳米纤维素的光电子性能及其器件也未见报道。诸多科学问题和技术难点包括如何从纤维素出发赋予该种光电子新材料性能(胶体颗粒维度、化学基团、亲水性)、如何满足光电子器件结构加工对材料性能的要求、如何明确材料物理化学性质与器件制备的关联机制等需要总结和讨论。
本文简单介绍了具有代表性的几种纳米纤维素的制备和特性,着重介绍了纳米纤维素的光电子特性,如光学透过性、光学干涉、散射、液晶手性特性等,列举和讨论了纳米纤维素在太阳能电池基板、智能响应反射涂层、光纤等领域的应用和存在的问题。本文有助于建立纳米纤维素关于制备、微观形貌特征、胶体颗粒尺度效应、关键物化特性和光电子器件性能之间的逻辑关系,可确定构建纳米纤维素相关的新器件结构的设计准则和理论根据,还可为纳米纤维素在乳液、薄膜、模板材料、储能器、电极、纸电子、传感器和致动器等方面的产业化应用提供必要的技术指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐雪珠
蒙紫薇
周国富
关键词:  纳米纤维素  纤维素纳米纤维  纤维素纳米晶  光学性能  光电子器件    
Abstract: Cellulose nanocrystals (CNCs) are colloidal and surface-active materials that have been developed rapidly, due to characteristics such as a controlled charge group, high chemical activity, high optical activity, light weight, low cost and environmental friendliness. CNCs are gaining increasing interest in photoelectronic device fields such as conductors, displays, sensors, transistors, radiofrequency devices, generators, light-emitting diodes (LED), etc. Despite all this, there are still many challenges for nanocellulose to be applicable in photoelectronic devices, which has not been reviewed yet. It is worth discussing the scientific problems and technical difficulties of CNCs, e.g., tunability of particle pro-perties (particle dimensions, chemical groups and hydrophilicity), device requirements, and the relationship of the physical/chemical attributes and the devices.
This paper introduces the preparation, characteristics and photoelectronic properties (optical transmittance, interference, scattering, liquid crystal chirality, etc.) of nanocellulose, and discusses the applications in solar cells, intelligent responsive/reflective films and optical fibers. We believe this review is helpful to better understand nanocellulose regarding its preparation, micromorphological features, colloidal effects, critical materialization characteristics, and performance. This review also gives a design criterion for devices and a theoretical basis for applications, such as emulsions, films, template materials, energy savers, electrodes, paper electronics, sensors and actuators.
Key words:  nano cellulose    cellulose nanofibril    cellulose nanocrystal    optical property    photoelectronic device
发布日期:  2023-02-08
ZTFLH:  O63  
  TN29  
  TQ35  
通讯作者:  *徐雪珠,华南师范大学华南先进光电子研究院副研究员、硕士研究生导师。2010年硕士毕业于日本信州大学,2015年毕业于美国北达科他州立大学并取得材料与纳米技术博士学位,2015—2019年分别在沙特阿卜杜拉国王科技大学和美国加州大学戴维斯分校从事博士后工作。2019年12月回国后,入选华南师范大学“拔尖人才计划”。研究领域为胶体颗粒表面润湿性调控,自组装、各向异性结晶与表界面,光子信息显示技术。近年主持和参与国家自然科学基金等项目共四项,在材料科学领域权威期刊和会议论文50余篇,包括Adv Funct Mater、Adv. Sci.、Langmuir, Macromolecules、ACS. Appl. Mater & Interfaces、 Nanoscale和Sci. Reports等。   
引用本文:    
徐雪珠, 蒙紫薇, 周国富. 纳米纤维素的光电子性能及器件应用综述[J]. 材料导报, 2023, 37(2): 21010134-14.
XU Xuezhu, MENG Ziwei, ZHOU Guofu. Photoelectronic Properties and Device Applications of Nanocellulose: a Review. Materials Reports, 2023, 37(2): 21010134-14.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010134  或          http://www.mater-rep.com/CN/Y2023/V37/I2/21010134
1 Habibi Y, Lucia L A, Rojas O J. Chemical Review, 2010, 110, 3479.
2 Lavoine N, Desloges I, Dufresne A, et al. Carbohydrate Polymers, 2012, 90, 735.
3 Beck-candanedo S, Roman M, Gray D G. Biomacromolecules, 2005, 6, 1048.
4 Iguchi M, Budhiono A. Journal of Materials Science, 2000, 5, 261.
5 Saied H E, Basta A H, Gobran R H. Polymer-Plastics Technology and Engineering, 2004, 43, 797.
6 Azizi Samir M A S, Alloin F, Dufresne A. Biomacromolecules, 2005, 6, 612.
7 Sinharay S, Bousmina M. Progress in Materials Science, 2005, 50, 962.
8 Henriksson M, Berglund L A, Isaksson P, et al. Biomacromolecules, 2008, 9, 1579.
9 Xu X, Liu F, Jiang L, et al. ACS Applied Materials & Interfaces, 2013, 5, 2999.
10 Abdul K H P S, Davoudpour Y, Islam M N, et al. Carbohydrate Polymers, 2014, 99, 649.
11 Sehaqui H, Mushi N E, Morimune S, et al. ACS Applied Materials & Interfaces, 2012, 4, 1043.
12 Tanpichai S, Quero F, Nogi M, et al. Biomacromolecules, 2012, 13, 1340.
13 Xu X, Liu F, Jiang L, et al. ACS Applied Materials & Interfaces, 2013, 5, 2999.
14 Xu X, Hsieh Y. Nanoscale, 2019, 11, 11719.
15 Sacui I A, Nieuwendaal R C, Burnett D J, et al. ACS Applied Materials & Interfaces, 2014, 6, 6127.
16 Guhados G, Wan W, Hutter J L. Langmuir, 2005, 21, 6642.
17 Hsieh Y C, Yano H, Nogi M, et al. Cellulose, 2008, 15, 507.
18 Quiévy N, Jacquet N, Sclavons M, et al. Polymer Degradation and Stability, 2010, 95, 306.
19 Wgberg L, Decher G, Norgren M, et al, Langmuir, 2008, 24, 784.
20 Tejado A, Alam M N, Antal M, et al. Cellulose, 2012, 19, 831.
21 Spence K L, Venditti R A, Rojas O J, et al. Cellulose, 2011, 18, 1097.
22 Henriksson M, Henriksson G, Berglund L A, et al. European Polymer Journal, 2007, 43, 3434.
23 Isogai A, Saito T, Fukuzumi H. Nanoscale, 2011, 3, 71.
24 Jiang F, Han S, Hsieh Y L. RSC Advance, 2013, 3, 12366.
25 Lagerwall J P F, Schütz C, Salajkova M, et al. NPG Asia Materials, 2014, 6, 1.
26 Jiang F, Hsieh Y L. Carbohydrate Polymers, 2013, 95, 32.
27 Wang Q, Zhao X, Zhu J Y. Industrial & Engineering Chemistry Research, 2014, 53, 11007.
28 Isogai A, Zhou Y. Current Opinion in Solid State and Materials Science, 2019, 23, 101.
29 Yu H Y, Zhang H, Song M L, et al. ACS Applied Materials & Interfaces, 2017, 9, 43920.
30 Tuzzin G, Godinho M, Dettmer A, et al. Carbohydrate Polymers, 2016, 148, 69.
31 Cherian B M, Pothan L A, Nguyen-Chung T, et al, Journal of Agricultural and Food Chemistry, 2008, 56, 5617.
32 Xu X, Zhou J, Jiang L, et al. Nanoscale, 2016, 8, 12294.
33 Lahiji R R, Xu X, Reifenberger R, et al. Langmuir, 2010, 26, 4480.
34 Klemm D, Kramer F, Moritz S, et al. Angewandte Chemie International Edition, 2011, 50, 5438.
35 Xu X, Zhou J, Jiang L, et al. Materials Letters, 2013, 109, 175.
36 Carlmark A, Malmström E E. Biomacromolecules, 2003, 4, 1740.
37 Zhang Z, Tam K C, Sèbe G, et al. Carbohydrate Polymers, 2018, 199, 603.
38 Morandi G, Heath L, Thielemans W. Langmuir, 2009, 25(14), 8280.
39 Xu X, Wang H, Jiang L, et al. Macromolecules, 2014, 47, 3409.
40 Kelly J A, Giese M, Shopsowitz K E, et al. Accounts of Chemical Research, 2014, 47, 1088.
41 Yan Q, Wang L J, Wang Y Q, et al. Scientia Silvae Sinica, 2019, 55, 152.
42 Cheung C C Y, Giese M, Kelly J A, et al. ACS Macro Letters, 2013, 2, 1016.
43 Yang X, Cranston E D. Chemistry of Materials, 2014, 35, 6016.
44 Dujardin E, Blaseby M, Mann S. Journal of Materials Chemistry, 2003, 13, 696.
45 Zhang Y P, Chodavarapu V P, Kirk A G, et al. Sensors and Actuators B:Chemical, 2013, 176, 692.
46 Khan M K, Bsoul A, Walus K, et al, Angewandte Chemie International Edition, 2015, 127, 4378.
47 Frka-Petesic B, Kelly J A, Jacucci G, et al. Advanced Materials, 2020, 32, 1.
48 Saito T, Uematsu T, Kimura S, et al. Soft Matter, 2011, 7, 8804 .
49 Dong H, Snyder J F, Tran D T, et al. Carbohydrate Polymers, 2013, 95, 760.
50 Wang M S, Jiang F, Hsieh Y L, et al. Journal of Materials Chemistry B, 2014, 2, 6226.
51 Hu L, Zheng G, Yao J, et al. Energy & Environmental Science, 2013, 6, 513.
52 Wang J, Cheng Q, Lin L, et al. ACS Nano, 2014, 8(3), 2739.
53 Tang H, Butchosa N, Zhou Q. Advanced Materials, 2015, 27, 2070.
54 Zhou Y, Fuentes-Hernandez C, Khan T M, et al. Scientific Reports, 2013, 3, 1536.
55 Li Z. Journal of Naval University of Engineering, 2002, 14, 19.
56 Sun H T, Coehoorn R, Zhou G F. Journal of South China Normal University (Natural Science Edition), 2017, 49, 21.
57 Cupelli D, Nicoletta F P, Manfredi S, et al. Solar Energy Materials & Solar Cells, 2009, 93, 2008.
58 Zhang B, Lin X, You Y, et al. Optics Express, 2019, 27, 13516.
59 Ha N Y, Ohtsuka Y, Jeong S M, et al. Nature Materials, 2008, 7, 43.
60 Khandelwal H A, Schenning J, Debije M G. Advanced Energy Materials, 2017, 7, 1.
61 Gu M, Jiang C, Liu D, et al. ACS Applied Materials & Interfaces, 2016, 8, 32565.
62 Yao K, Meng Q, Bulone V, et al. Advanced Materials, 2017, 29, 1.
63 Xu X, Zhou H, Zhou G, et al. ACS Applied Bio Materials, 2020, 3, 4522.
64 Liu Y, Wu P. Advanced Functional Materials, 2020, 30, 1.
65 Dong Y, Bazrafshan A, Pokutta A, et al. ACS Nano, 2019, 13, 9918.
66 Almohammadi H, Bagnani M, Mezzenga R. Nature Communications, 2020, 11, 1.
67 Ureña-Benavides E E, Ao G, Davis V A, et al. Macromolecules, 2011, 44, 8990.
68 Liu Q, Smalyukh I I. Science Advances, 2017, 3, e1700981.
69 Li T, Xu X, Li C N, et al. Advanced Science, 2020, 1902439, 1.
70 Kang C Y, Lin C H, Lin C H, et al. Advanced Science, 2019, 1902230, 1.
[1] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[2] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[3] 王雅君, 白秋红, 伍根成, 王正, 李聪, 申烨华. 纳米纤维素基复合材料及其用于柔性储能器件的研究进展[J]. 材料导报, 2022, 36(23): 21010198-7.
[4] 于佳酩, 王士鹏, 董娅慧, 王雨梦, 李玉, 程倩. 基于磁场-真空协同作用局部调制胆甾型纤维素[J]. 材料导报, 2022, 36(11): 20120091-6.
[5] 刘子甄, 金欣, 王闻宇, 牛家嵘. 基于分子结构设计的高性能聚酰亚胺的研究进展[J]. 材料导报, 2021, 35(z2): 600-611.
[6] 魏洁, 邵自强. 纳米纤维素材料在功能膜材料中的应用研究进展[J]. 材料导报, 2021, 35(1): 1203-1211.
[7] 金克霞, 江泽慧, 马建锋, 傅峰, 杨淑敏, 刘杏娥. 纤维素纳米晶基导电复合材料的应用进展[J]. 材料导报, 2020, 34(Z2): 521-524.
[8] 林进义, 安翔, 白鲁冰, 徐曼, 韦传新, 解令海, 林宗琼, 黄维. 柔性高分子半导体:力学性能和设计策略[J]. 材料导报, 2020, 34(1): 1001-1008.
[9] 林青, 李玲玲, 陈文远, 张爽, 王威, 张小娟, 郝凌云. 通过改进前驱体制备具有特异光学性能的油烟墨[J]. 材料导报, 2019, 33(Z2): 61-64.
[10] 王海风, 王若轩, 董云谷, 刘鑫. 溶胶-凝胶法制备Eun+x∶SiO2薄膜及其性能研究[J]. 材料导报, 2019, 33(Z2): 165-168.
[11] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[12] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[13] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[14] 马浩, 杨瑞霞, 李春静. 层状二硫化钼材料的制备和应用进展*[J]. 《材料导报》期刊社, 2017, 31(3): 7-14.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed