Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 21040224-7    https://doi.org/10.11896/cldb.21040224
  无机非金属及其复合材料 |
耐热酚醛树脂基活性炭的制备及其超级电容器性能研究
盛蕊1,2,†, 唐婷婷1,2,†, 田敏1,2, 袁舒慧1,2, 张苏1,2,*, 范壮军3,*
1 新疆大学碳基能源资源化学与利用国家重点实验室,乌鲁木齐 830046
2 新疆大学化学学院,乌鲁木齐 830046
3 中国石油大学(华东)材料科学与工程学院,山东 青岛 266580
Research on Heat-resistant Phenolic Resin-based Activated Carbon for Supercapacitor Electrodes
SHENG Rui1,2,†, TANG Tingting1,2,†, TIAN Min1,2, YUAN Shuhui1,2, ZHANG Su1,2,*, FAN Zhuangjun3,*
1 State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resources, Xinjiang University, Urumqi 830046, China
2 College of Chemistry, Xinjiang University, Urumqi 830046, China
3 School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, Shangdong, China
下载:  全 文 ( PDF ) ( 24247KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 活性炭因其大比表面积和低成本的优势,被广泛应用于超级电容器电极材料中。然而在活性炭的制备过程中,前驱体往往需要进行预炭化/氧化等处理以增强其热稳定性,这将会提高制备成本和工艺复杂性,不利于实际应用需求。为解决这一问题,本工作利用具有高度交联结构的耐热酚醛树脂为前驱体,通过一步活化法制备具有超高比表面及优异导电性的活性炭电极材料。最佳碱炭质量比为3:1时所制备的活性炭比表面积高达2 656 m2·g-1。在6 mol·L-1 KOH电解液中测试了活性炭电极的电容储能性能,1 A·g-1时其比容量高达305.5 F·g-1,在50 A·g-1的超大电流密度下电容保持率有63.8%,远高于目前商业活性炭水平。另外,其在高质量负载量下仍具有优异的容量、倍率、循环性能,表现出巨大的应用潜质。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
盛蕊
唐婷婷
田敏
袁舒慧
张苏
范壮军
关键词:  酚醛树脂  活性炭  高比表面积  高负载  超级电容器    
Abstract: Activated carbon is widely used for supercapacitor electrode material due to its large specific surface area and low cost. However, precursors often need to be pre-carbonized/oxidized to improve the stability in the preparation of activated carbon. Thus, the high preparation cost and process complexity inhibits the practical application. Herein, we proposed a one-step chemical activation method to prepare activated carbon with high specific surface area and conductivity using a highly cross-linked phenolic resin as the precursor. At the optimized KOH to carbon mass ratio of 3:1, the specific surface area of the activated carbon was as high as 2 656 m2·g-1. When used as the electrode materials for supercapacitors, it showed a high capacitance of 305.5 F·g-1 at 1 A·g-1 and an outstanding rate performance of 63.8% capacitance retention at 50 A·g-1 in 6 mol·L-1 KOH electrolyte, which were much higher than the commercial activated carbon. In addition, it still remains good capacitance, rate performance and cycle stability at high electrode mass loadings, showing great potential for practical application.
Key words:  phenolic resin    activated carbon    high specific surface area    high mass loading    supercapacitor
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  O646  
基金资助: 国家自然科学基金(52062046;51702275;51972342;51872056);新疆维吾尔自治区自然科学基金(2020D01C019);山东省泰山学者人才计划项目(ts20190922);山东省自然科学基金重大基础研究(ZR2019ZD51)
通讯作者:  * 张苏,新疆大学化学学院副教授、硕士生导师。2016年于北京化工大学博士毕业。主要从事低维炭材料的结构设计、合成及其在超级电容器、锂离子电池等电化学储能器件中的应用理论研究。近年来在相关领域国际学术期刊如Adv. Energy Mater.、 Adv. Funct. Mater.、 Nano Energy、 Energy Storage Mater.、 J. Mater. Chem. A、 Carbon等发表学术论文50余篇。suzhangs@163.com
范壮军,中国石油大学(华东)材料科学与工程学院教授、博士生导师。2003年博士毕业于中国科学院山西煤炭化学研究所。研究方向覆盖纳米炭材料的结构调控及批量制备、超级电容器,锂/钠/钾离子电池、固态电池等新型储能体系的基础及应用研究。近年来在相关领域国际学术期刊如Chem. Soc. Rev.、Adv. Mater.、Energy Environ. Sci.、Adv. Energy Mater.、ACS Nano、 Adv. Funct.Mater.、Nano Energy等发表论文270余篇。fanzhj666@163.com   
作者简介:  盛蕊,新疆大学化学学院讲师。1995年于新疆大学分析化学专业本科毕业,2000年于新疆大学物理化学专业硕士毕业后于新疆大学工作至今。目前主要从事功能材料研究和无机化学课程教学工作。近年来在相关领域国际学术期刊如J. Mater. Chem. A、 Carbon、Materials Today Energy、ACS Appl. Mater. Interfaces、Scientific Reports等发表学术论文20余篇。
唐婷婷,2019年6月毕业于沈阳化工大学,获得工学学士学位。现为新疆大学化学学院硕士研究生,在张苏副教授的指导下进行研究。目前主要研究方向为炭材料结构设计及其在超级电容器中的性能研究。
†共同第一作者
引用本文:    
盛蕊, 唐婷婷, 田敏, 袁舒慧, 张苏, 范壮军. 耐热酚醛树脂基活性炭的制备及其超级电容器性能研究[J]. 材料导报, 2023, 37(4): 21040224-7.
SHENG Rui, TANG Tingting, TIAN Min, YUAN Shuhui, ZHANG Su, FAN Zhuangjun. Research on Heat-resistant Phenolic Resin-based Activated Carbon for Supercapacitor Electrodes. Materials Reports, 2023, 37(4): 21040224-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040224  或          http://www.mater-rep.com/CN/Y2023/V37/I4/21040224
1 Wang Y G, Song Y F, Xia Y Y. Chemical Society Reviews, 2016, 45(21), 5925.
2 Liu T Y, Zhang F, Song Y. Journal of Materials Chemistry A, 2017, 5, 17705.
3 Qin F W, Wang X L, Li Y Z. Journal of Functional Materials, 2020, 51(9), 9045(in Chinese).
秦富伟, 王相龙, 李怡招. 功能材料, 2020, 51(9), 9045.
4 Zhu J Y, Dong Y, Zhang S, et al. Acta Physico-Chimica Sinica, 2020, 36(2), 118(in Chinese).
朱家瑶, 董玥, 张苏. 物理化学学报, 2020, 36(2), 118.
5 Farma R, Deraman M, Awitdrus A, et al. Bioresour Technol, 2013, 132, 254.
6 Li P, Li H, Yang Q H, et al. Advanced Science, 2019, 6(14), 1802355.
7 Shang T, Xu Y, Li P, et al. Nano Energy, 2020, 70, 104531.
8 Sun W, Lipka S M, Swartz C, et al. Carbon, 2016, 103, 181.
9 Aravind D, Hegde G. RSC Advances, 2015, 5(107), 88339.
10 Faraji S, Ani F N. Renewable and Sustainable Energy Reviews, 2015, 42, 823.
11 Chen Y, Zhu Y C, Wang Z C, et al. Advances in Colloid and Interface Science, 2011, 163(1), 39.
12 Qing Y, Jiang Y T, Zhang S, et al. Journal of Materials Chemistry A, 2019, 7, 6021.
13 Lozano-Castelló D, Lillo-Ródenas M A, Cazorla-Amorós D, et al. Carbon, 2001, 39(5), 741.
14 Tian W, Gao Q, Tan Y, et al. Journal of Materials Chemistry A, 2015, 3, 5656.
15 Qin F F, Tian X D, Guo Z Y, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(11), 15708.
16 Qu W H, Guo Y B, Shen W Z, et al. Journal of Physical Chemistry C, 2016, 120(28), 15105.
17 Cakal G O, Yuecel H, Gueruez A G. Journal of Analytical & Applied Pyrolysis, 2007, 80(1), 262.
18 Wang K, Jiang J G, Sun R F. Applied Mechanics & Materials, 2014, 521, 654.
19 Song Y, Li K X, Yang C L, et al. Petrochemical Technology, 2002, 31(6), 431. (in Chinese).
宋燕, 李开喜, 杨常玲, 等. 石油化工, 2002, 31(6), 431.
20 Liu Y D, Gao F, Zhang Y M, et al. Petrochemical Technology & Application, 2012, 30(1), 93. (in Chinese).
刘银东, 高飞, 张艳梅, 等. 石化技术与应用, 2012, 30(1), 93.
21 Wang C H, Wen W C, Yao B Y, et al. Advanced Powder Technology the Internation Journal of the Society of Powder Technology Japan, 2016, 27(4), 1387.
22 Zhao M Z, Jing J L, Wang X F, et al. International Journal of Adhesion & Adhesives, 2016, 64, 163.
23 Bafekrpour E, Yang C, Natali M, et al. Composites Part A Applied Science & Manufacturing, 2013, 54, 124.
24 Wen Y H, Cao G P, Cheng J, et al. Journal of the Electrochemical Society, 2005, 152(9), A1770.
25 Cai T W, Min Z, Ren D Y, et al. Journal of Power Sources, 2013, 231, 197.
26 Teng H, Wang S C. Carbon, 2000, 38(6), 817.
27 Chen Z Q, Liu H B, He Y D, et al. Engineering Plastics Application, 2006, 34(11), 56. (in Chinese).
陈智琴, 刘洪波, 何月德, 等. 工程塑料应用, 2006, 34(11), 56.
28 Guo Y J, Hu L H, Zhang B F, et al. The Korean Journal of Chemical Engineering, 2018, 35(1), 298.
29 Tian W H, Zhu J Y, Dong Y, et al. Carbon, 2020, 161, 89.
30 Zhang S, Zhu J Y, Qing Y, et al. Materials Today Energy, 2017, 6, 36.
31 Zhang W, Cao Z, Wang W, et al. Angewandte Chemie, 2020, 132(11).
32 Zhao J, Zhu J Y, Li Y T, et al. ACS Applied Materials & Interfaces, 2020, 12(10), 11669.
33 Zhu J, Zhang S, Wang L X, et al. Carbon, 2018, 129, 54.
34 Barros E B, Demir N S, Filho A, et al. Physical Review B Condensed Matter, 2005, 71(16), 5422.
35 Bichat M P, Raymundo-PinEro E, Béguin F, et al. Carbon, 2010, 48(15), 4351.
36 Khomenko V, Raymundo-Pinero E, Béguin F, et al. Journal of Power Sources, 2006, 153(1), 183.
37 Wang J G, Liu H Z, Sun H H, et al. Carbon, 2017, 10, 084.
38 Xue H R, Wang T, Zhao J Q, et al, Carbon, 2016, 104, 10.
39 Zhang S, Li Y T, Song H H, et al. Scientific Reports, 2016, 6, 19292.
40 Zhang S, Li Y T, Kang Y, et al. Carbon, 2016, 108, 461.
41 Dong Y, Zhang S, Du X, et al. Advanced Functional Materials, 2019, 29(24), 1901127.
42 Jiang Y T, Li J, Jiang Z M, et al. Carbon, 2021, 175, 281.
43 Wang X L, Li Y Z, Yang C, et al. International Journal of Energy Research, 2020, 45(3), 4782.
44 Guo N N, Li M, Sun X K, et al. Green Chemistry, 2017, 19, 2595.
45 Zhang D D, Zhao J H, Feng C, et al. Journal of Power Sources, 2017, 342, 363.
46 Yong W, Ru Y, Min L, et al. Industrial Crops & Products, 2015, 65, 216.
47 Pang J, Zhang W F, Zhang H, et al. Carbon, 2018, 132, 280.
48 Xing W, Huang C, Zhuo S. Carbon, 2009, 47(7), 1715.
49 Zheng Z Y, Gao Q M, et al. Journal of Power Sources, 2011, 196(3), 1615.
50 Xu Y X, Lin Z Y, Huang X Q, et al. ACS Nano, 2013, 7(5), 4042.
[1] 李世杰, 王智辉, 代琳心, 李振瑞, 王佳军, 马建锋, 刘杏娥. 银/尿素改性竹质活性炭的制备及甲醛净化与抗菌性能[J]. 材料导报, 2022, 36(Z1): 22030103-6.
[2] 郑梓璇, 王德刚, 梁国杰, 栗丽, 王馨博, 苏茹月, 李凯. 聚氨酯泡沫浸渍酚醛树脂溶液制备炭泡沫隔热材料研究[J]. 材料导报, 2022, 36(7): 21060034-7.
[3] 侯璞, 张九州, 寻之玉, 霍鹏飞. 聚氨酯基聚合物电解质的应用进展[J]. 材料导报, 2022, 36(5): 20060009-9.
[4] 王雅君, 白秋红, 伍根成, 王正, 李聪, 申烨华. 纳米纤维素基复合材料及其用于柔性储能器件的研究进展[J]. 材料导报, 2022, 36(23): 21010198-7.
[5] 胡竟志, 徐照华, 沈超, 谢科予. 三维打印技术在电化学储能器件中的应用研究进展[J]. 材料导报, 2022, 36(20): 20100151-11.
[6] 周海云, 何明基, 张磊, 王红强, 梁华彬, 杨健华, 钟新仙. 以Nafion和离子液体作为软模板合成聚苯胺及其在超级电容器中的应用[J]. 材料导报, 2022, 36(18): 21050119-6.
[7] 王坤俊, 胡波, 李世军, 常森, 张治权, 丘丹圭. 废旧浸渍活性炭的微波再生条件及其结构和性能研究[J]. 材料导报, 2022, 36(17): 21070137-6.
[8] 牛晓勤, 康小雅, 马应霞, 王嘉伟, 陈新权, 田虎, 陈玉红, 冉奋. 新型球状Ni/Co-MOFs电极材料的构筑及电化学性能研究[J]. 材料导报, 2022, 36(14): 21050021-7.
[9] 苏英杰, 高丽娟, 卢振杰, 杨广, 程俊霞, 赵雪飞. 废弃酚醛树脂保温材料基电极材料多孔炭的制备及构效关系[J]. 材料导报, 2022, 36(12): 21030309-7.
[10] 冯凯萍, 吕冰海, 王帅, 赵天晨, 周兆忠. SiC晶片金刚石磨料凝胶抛光盘的制备与性能分析[J]. 材料导报, 2022, 36(12): 21050197-9.
[11] 李搛倬, 传秀云, 杨扬, 刘芳芳, 齐鹏越. 黄铁矿型FeS2的制备及其储能应用[J]. 材料导报, 2022, 36(1): 20080005-13.
[12] 李凯旋, 王焕磊. 生物多糖衍生的超级电容器用碳电极材料研究进展[J]. 材料导报, 2022, 36(1): 20080007-13.
[13] 谢丹丹, 张宝荣, 赵晖, 刘君, 宋安康, 朱国本, 马爱珍, 宋文文, 赵海峰. 镍源对催化酚醛树脂原位生成碳纳米管的影响[J]. 材料导报, 2021, 35(z2): 46-49.
[14] 李世杰, 黄慧娟, 尚莉莉, 马建峰, 马千里, 刘杏娥. 活性炭净化室内甲醛的研究进展[J]. 材料导报, 2021, 35(z2): 75-80.
[15] 范翠红, 秦会斌, 周继军. 酚醛树脂在铝基板上的应用[J]. 材料导报, 2021, 35(z2): 589-592.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed