Please wait a minute...
材料导报  2022, Vol. 36 Issue (17): 21070137-6    https://doi.org/10.11896/cldb.21070137
  无机非金属及其复合材料 |
废旧浸渍活性炭的微波再生条件及其结构和性能研究
王坤俊1,*, 胡波2,*, 李世军1, 常森1, 张治权1, 丘丹圭1,*
1 中国辐射防护研究院环境工程技术研究所,太原 030006
2 中国辐射防护研究院辐照技术中心,太原 030006
Study on Microwave Regeneration Conditions, Structure and Properties of Waste Impregnated Activated Carbon
WANG Kunjun1,*, HU Bo2,*, LI Shijun1, CHANG Sen1, ZHANG Zhiquan1, QIU Dangui1,*
1 Department of Environmental Engineering and Technology, China Institute for Radiation Protection, Taiyuan 030006, China
2 Irradiation Technology Center, China Institute for Radiation Protection, Taiyuan 030006, China
下载:  全 文 ( PDF ) ( 6368KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了实现废旧碘吸附器更换后产生的浸渍活性炭废物再利用,探索出可行的废浸渍活性炭再生处理技术,以国内某核电站通风系统经连续运行使用失效后的浸渍活性炭为研究对象,本工作开展了废旧浸渍活性炭微波再生方法研究,确定了微波再生的最佳实验条件,并对再生后活性炭的热稳定性、微观结构、吸附性能、关键物理性能等的变化进行了分析。在再生温度600 ℃、活化时间10 min的最佳再生条件下,能够得到性能良好的再生活性炭,在不进行再次浸渍的情况下,其除碘效率和碘吸附值分别达到97.85%和1 000 mg/g。另外,再生活性炭的球盘强度仍保持在97%以上,CCl4活性也明显增加,从再生前的26.32%增加至49.02%。但是,再生温度过高(大于800 ℃)会导致活性炭表面孔隙结构发生孔熔现象,不利于吸附性能的恢复。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王坤俊
胡波
李世军
常森
张治权
丘丹圭
关键词:  废旧活性炭  微波再生  微观结构  物理性能  除碘效率    
Abstract: In order to realize the reuse of ineffective impregnated activated carbon generated by the waste iodine adsorber, a feasible regeneration technology of the impregnated activated carbon was explored. In this work, microwave regeneration method was utilized to regenerate ineffective impregnated activated carbon from ventilation system of continuous operation in a domestic nuclear power plant and the optimum experimental conditions were determined. The changes of thermal stability, microstructure, adsorption performance and key physical properties of the regenerated activated carbon were also analyzed. The regenerated activated carbon with good performance could be obtained under the optimal regeneration condition of 600 ℃ regeneration temperature and activation for 10 min. Without further impregnation, the iodine removal efficiency and iodine adsorption value of the regenerated activated carbon were 97.85% and 1 000 mg/g, respectively. Besides, more than 97% of the strength could be maintained after regeneration. In particular, the activity of CCl4 also increased significantly from 26.32% to 49.02%. However, the higher regeneration temperature (> 800 ℃) would lead to the pore fusion on the surface of activated carbon, which was not conducive to the recovery of adsorption performance.
Key words:  waste activated carbon    microwave regeneration    microstructure    physical property    iodine removal efficiency
出版日期:  2022-09-10      发布日期:  2022-09-10
ZTFLH:  TL941  
基金资助: 基金项目:中国核工业集团有限公司“青年英才项目”( CNNC-2021YTEP-028);山西省应用基础研究计划项目(201701D221095)
通讯作者:  *qiudangui@163.com   
作者简介:  王坤俊,中国辐射防护研究院环境工程技术研究所研究员。2010年7月毕业于太原理工大学化学与化工学院,获硕士学位。同年加入中国辐射防护研究院环境工程技术研究所工作至今,主要从事核空气净化理论与技术研究,重点开展放射性气体吸附材料、净化技术的开发以及应用研究。发表学术论文20余篇,授权国家发明专利10余项。
胡波,中国辐射防护研究院辐照技术中心副研究员。1987年本科毕业于中国人民解放军国防科学技术大学应用物理系辐射物理专业,主要从事钴源辐照技术、辐照材料等方面的研究。发表学术论文20余篇,授权国家专利20余项。
丘丹圭, 中国辐射防护研究院环境工程技术研究所研究员、硕士研究生导师。1989年6月本科毕业于华侨大学生物化学专业,主要从事核空气净化技术、材料、设备等方面的研究工作。发表学术论文40余篇,授权国家发明专利近20项。†共同第一作者
引用本文:    
王坤俊, 胡波, 李世军, 常森, 张治权, 丘丹圭. 废旧浸渍活性炭的微波再生条件及其结构和性能研究[J]. 材料导报, 2022, 36(17): 21070137-6.
WANG Kunjun, HU Bo, LI Shijun, CHANG Sen, ZHANG Zhiquan, QIU Dangui. Study on Microwave Regeneration Conditions, Structure and Properties of Waste Impregnated Activated Carbon. Materials Reports, 2022, 36(17): 21070137-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070137  或          http://www.mater-rep.com/CN/Y2022/V36/I17/21070137
1 Wang R Y, Guo C C, Liu Q , et al.Radiation Protection, 2007, 27(2), 119 (in Chinese).
王瑞云, 郭创成, 刘群, 等. 辐射防护, 2007, 27(2), 119.
2 Li L Q, Sun Z,Li H L, et al. Journal of the Air & Waste Management Association, 2012, 62(10), 1196.
3 Wang K J, Wang L J, Han L H, et al. New Chemical Materials, 2018, 46(9), 190 (in Chinese).
王坤俊, 王龙江, 韩丽红, 等.化工新型材料, 2018, 46(9) , 190.
4 Wren J C, Moore C J, Rasmussen M T, et al.Nuclear Technology, 1999, 125(1), 28.
5 Liu X T, Quan X, Bo L L, et al.Carbon, 2004, 42, 415.
6 Coss P M, Cha C Y.Journal of the Air & Waste Management Association, 2000, 50(4), 529.
7 Chen M S, Huang J, Wang J H, et al. Journal of Chemical Engineering of Japan, 2009, 42(5), 325.
8 Chen Y T, Huang Y P, Wang C, et al.Journal of the Air & Waste Mana-gement Association, 2020, 70(6), 616.
9 Haque K E, Kondos P D, Macdonald R J C. US patent, CA 2008242, 2000.
10 Son H K,Sivakumar S, Rood M J, et al. Journal of Hazardous Materials, 2016,301, 27.
11 Furmaniak S. Environmental Technology, 2015, 36(15), 1984.
12 González-García C M, González J F, Román S. Fuel Processing Technology, 2011, 92 (2), 247.
[1] 晏彩先, 许明明, 陈祝安, 王姿奥, 刘伟平, 常桥稳. 新型铱配合物[Ir(pmppy)2(Br2bpy)]PF6的合成、晶体结构及光物理性能测试[J]. 材料导报, 2022, 36(Z1): 21090264-5.
[2] 刘川北, 高建明, 孟礼元, 刘来宝, 张礼华, 张红平, 罗旭. 聚合物和纤维对石膏基材料早期水化与浆体微结构的影响[J]. 材料导报, 2022, 36(8): 20090176-7.
[3] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[4] 范青杰, 杨子健, 赖仕全, 岳莉, 朱亚明, 赵雪飞. 喹啉沥青的合成及其富氮衍生炭的微观结构研究[J]. 材料导报, 2022, 36(4): 20120072-6.
[5] 蔡雨晨, 冯可芹, 周博芳, 陈思潭. Nb对Zr基钎料及钎焊连接SiC陶瓷的影响[J]. 材料导报, 2022, 36(3): 20090283-5.
[6] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[7] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[8] 张秉宗, 贡力, 杜强业, 梁颖, 宫雪磊, 杜秀萍. 西北盐渍干寒地区聚丙烯纤维混凝土耐久性损伤试验研究[J]. 材料导报, 2022, 36(17): 21030317-7.
[9] 张向东, 蔡习军, 蔡飞, 张世宏, 陈利. 钛合金表面不同多层结构Cr/CrAlN涂层的制备及磨损性能[J]. 材料导报, 2022, 36(15): 21020062-6.
[10] 侯磊, 韩学锋, 邢宝林, 曾会会, 王振帅, 郭晖, 张传祥, 谌伦建. 天然矿物为模板制备功能炭材料的研究进展[J]. 材料导报, 2022, 36(12): 20080165-11.
[11] 张玉宝, 李志刚, 王艺, 蒋继成, 姚钢, 赵弘韬. 工作气压对磁控溅射TaN薄膜微结构和性能的影响[J]. 材料导报, 2021, 35(z2): 60-63.
[12] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[13] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[14] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[15] 戴宗妙, 彭雪峰, 刘喜宗, 吴恒. 铺层方式对碳纤维预浸料不同温度下压缩特性的影响[J]. 材料导报, 2021, 35(z2): 564-569.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed