Research Progress on the Preparation of Functional Carbon Materials Using Natural Minerals as Templates
HOU Lei1, HAN Xuefeng2, XING Baolin1,2, ZENG Huihui2, WANG Zhenshuai1, GUO Hui2, ZHANG Chuanxiang1,2, CHEN Lunjian1,2
1 Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003,Henan, China 2 Collaborative Innovation Center of Coal Work Safety, Henan Province, Jiaozuo 454003, Henan, China
Abstract: Carbon materials have been widely applied in a variety of technological fields such as environmental remediation, energy storage and conversion, biomedicine, electronic information industry, and national defense science and technology due to their specific microstructure, adjustable pore structure, and excellent physical and chemical stability. In particular, the microstructure of carbon materials plays a determinant role in their practical application performance. Therefore, it is of great significance to develop specific functional carbon materials for different purposes and achieve precise control of their microstructure. Among all preparation methods of carbon materials, using natural minerals as templates has attracted considerable attention due to their overwhelming superiority in ease of operation, abundant resources, and precise regulation of the microstructure of carbon materials. Natural minerals that possess one-dimensional(1D), two-dimensional(2D), and three-dimensional(3D) morphology and unique porous structure can be chosen as a kind of ideal natural template for preparing carbon materials with distinctive structures. This review introduces the principle of preparing function carbon materials from natural minerals as templates, with a focus on the current research status and development trends of the natural mineral template method in preparation and microstructure regulation of functional carbon materials. The paper mainly concerns three major research subfields. (1) 1D nanocarbon materials such as carbon nanotubes (CNTs), carbon nanorods (CNRs) and carbon nanofibers (CNFs) can be obtained via selectively replicating the morphology or pore channel of halloysite, attapulgite, and sepiolite by carbon precursors. Meanwhile, their morphology and pore structure can be easily controlled in the manner of heat treatment, acid activation and other template modification methods. (2) 2D nanocarbon materials like graphene and carbon nanosheets(CNSs) are synthesized by the ordered arrangement of carbon source in the interlayer space of vermiculite, montmorillonite and hydrotalcite. Furthermore, the expanding modification methods for layered mineral templates including thermal treatment and ion exchange have also been adopted to improve the 2D morphology of carbon materials. (3) 3D porous carbon with “micropore, mesopore, macropore” hierarchical porous structure is prepared through the structure guiding effect of zeolite, diatomite and other 3D interlinked porous network mineral templates. More significantly, the unique porous structure can be precisely regulated with the pore-building approaches of CO2, H2O and KOH activation. Besides, this paper points out the unresolved issues in the preparation of functional carbon materials using natural minerals as templates and prospect its future development trend, for the purpose of providing some guidance for the development and application of high-performance functional carbon materials.
1 Terrones M, Botello-Méndez A R, Campos-Delgado J, et al. Nano Today, 2010, 5(4), 351. 2 Li Z H, Wang L, Li Y, et al. Composites Science and Technology, 2019, 179, 10. 3 Mauter M S, Elimelech M. Environmental Science & Technology, 2008, 42(16), 5843. 4 Cha C, Shin S R, Annabi N, et al. ACS Nano, 2013, 7(4), 2891. 5 Bayatsarmadi B, Zheng Y, Vasileff A, et al. Small, 2017, 13(21), 1700191. 6 Zheng P, Wu N Q. Chemistry-an Asian Journal, 2017, 12(18), 2343. 7 Chen Y H. Carbon Techniques, 2008, 27(6), 28 (in Chinese). 陈壹华. 炭素技术, 2008, 27(6), 28. 8 Liang C D, Li Z J, Dai S. Angewandte Chemie International Edition, 2008, 47(20), 3696. 9 Lu A H, Hao G P, Sun Q, et al. Macromolecular Chemistry and Physics, 2012, 213(10-11), 1107. 10 Li S R, Xie H, Shen J F, et al. Crystallography and mineralogy, Geolo-gical Publishing House, China, 2008 (in Chinese). 李胜荣,许虹,申俊峰,等. 结晶学及矿物学, 地质出版社, 2008. 11 Zhao L, Dong F Q, Wang G H, et al. China Powder Science and Techno-logy, 2008, 14(1), 46 (in Chinese). 赵磊,董发勤,王光华,等. 中国粉体技术, 2008, 14(1), 46. 12 Chen T H, Xie Q Q, Liu H B, et al. Earth Science, 2018, 43(5), 1439 (in Chinese). 陈天虎,谢巧勤,刘海波,等. 地球科学, 2018, 43(5), 1439. 13 Yang Q. Study on silanization of alkalitreated halloysite nanotubes. Master's Thesis, Inner Mongolia University, China, 2019 (in Chinese). 杨青. 碱活化埃洛石纳米管表面硅烷化改性研究. 硕士学位论文, 内蒙古大学, 2019. 14 Li A J, Chuan X Y, Cao X, et al. Journal of Functional Materials, 2017, 48(2), 2063. 李爱军,传秀云,曹曦,等. 功能材料, 2017, 48(2), 2063. 15 Liu Y H, Guo Y H, Wu J Y, et al. Chemical Journal of Chinese Universities, 2008(6), 1171. 刘亚辉,郭玉华,吴静怡,等. 高等学校化学学报, 2008(6), 1171. 16 Zheng S L. Non-metallic mineral materials, Chemical Industry Press, China, 2007 (in Chinese). 郑水林. 非金属矿物材料, 化学工业出版社, 2007. 17 Iijima S. Nature, 1991, 354, 56. 18 Lu X F, Wang K, Cui Z H. Materials Reports, 2022, 36(9), 20120188 (in Chinese). 卢学峰,王宽,崔志红.材料导报, 2022, 36(9), 20120188. 19 Pastorkova K, Jesenak K, Kadlecikova M, et al. Applied Surface Science, 2012, 258(7), 2661. 20 Su D S. ChemSusChem, 2009, 2(11), 1009. 21 Nie J Q, Zhang Q, Zhao M Q, et al. Carbon, 2011, 49(5), 1568. 22 Pasbakhsh P, Churchman G J, Keeling J L. Applied Clay Science, 2013, 74, 47. 23 Tharmavaram M, Pandey G, Rawtani D. Advances in Colloid & Interface Science, 2018, 261, 82. 24 Cheng Z L, Liu Y Y, Liu Z. Surface & Coatings Technology, 2016, 307, 633. 25 Liu Z, Cheng Z L, Liu Y Y. Micro & Nano Letters, 2016, 12(4), 236. 26 Zhou S H, Chuan X Y. Journal of Inorganic Materials, 2014, 29(6), 584. 周述慧,传秀云. 无机材料学报, 2014, 29(6), 584. 27 Liu W J, Ru Q X, Zuo S X, et al. Applied Surface Science, 2019, 469, 269. 28 Liu W J, Yuan K, Ru Q X, et al. Arabian Journal of Chemistry, 2020, 13(4), 4954. 29 Pushpaletha P, Lalithambika M. Applied Clay Science, 2011, 51(4), 424. 30 Zhang X L, Jiang W P, Wu X P, et al. CIESC Journal, 2012, 63(3), 916 (in Chinese). 张先龙,姜伟平,吴雪平,等. 化工学报, 2012, 63(3), 916. 31 Sun L, Yan C J, Chen Y, et al. Journal of Non-Crystalline Solids, 2012, 358(18), 2723. 32 Shi L M, Yao J F, Jiang J L, et al. Microporous and Mesoporous Mate-rials, 2009, 122(1), 294. 33 Zhong L F, Tang A D, Yan P, et al. Journal of Colloid and Interface Science, 2019, 537, 450. 34 Fernández-Saavedra R, Aranda P, Ruiz-Hitzky E. Advanced Functional Materials, 2010, 14(1), 77. 35 Brigatti M F, Galán E, Theng B K G. Developments in Clay Science, 2013, 5, 2. 36 Sandí G, Carrado K A, Winans R E, et al. Journal of the Electrochemical Society, 1999, 146(10), 3644. 37 Back C K, Sandí G, Prakash J, et al. Journal of Physical Chemistry B, 2006, 110(33), 16225. 38 Singh V, Joung D, Zhai L, et al. Progress in Materials Science, 2011, 56(8), 1178. 39 Cai X K, Luo Y T, Liu B L, et al. Chemical Society Reviews, 2018, 47(16), 6224. 40 Zhu T T, Zhou C H, Kabwe F B, et al. Applied Clay Science, 2019, 169, 48. 41 Qing Y H, Su X L, Wang Y B, et al. Materials Reports A:Review Papers, 2020, 34(10), 19018 (in Chinese) 卿艳红,苏小丽,王钺博,等. 材料导报:综述篇, 2020, 34(10), 19018. 42 Kyotani T, Sonobe N, Tomita A. Nature, 1988, 331(6154), 331. 43 Bakandritsos A, Steriotis T, Petridis D. Chemistry of Materials, 2004, 16(8), 1551. 44 Zhu R L, Chen Q Z, Wang X, et al. RSC Advances, 2015, 5(10), 7522. 45 Chen Q Z, Liu H M, Zhu R L, et al. Microporous and Mesoporous Mate-rials, 2016, 225, 137. 46 Fan X M, Yu C, Yang J, et al. Advanced Energy Materials, 2015, 5(7),1401761 47 Wang L J. The study of structural modification, organic intercalation, and microwave expansion of vermiculite. Ph.D. Thesis, China University of Geosciences(Beijing), China, 2014 (in Chinese). 王丽娟. 蛭石结构改性、有机插层及微波膨胀研究. 博士学位论文, 中国地质大学(北京), 2014. 48 Wang Z S, Xing B L, Zeng H H, et al. Applied Surface Science, 2021, 547, 149228. 49 Xu C G, Ning G Q, Zhu X, et al. Carbon, 2013, 62, 213. 50 Ning G Q, Xu C G, Cao Y M, et al. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(2), 408. 51 Lyu H Y, Wang L C, Yang K Y, et al. Journal of Shanghai University of Electric Power, 2020, 36(1), 57. 吕泓颖,王罗春,杨凯艳,等. 上海电力学院学报, 2020, 36(1), 57. 52 Bukhtiyarova M V. Journal of Solid State Chemistry, 2019, 269, 494. 53 Baskaran T, Christopher J, Sakthivel A. RSC Advances, 2015, 5(120), 98853. 54 Mills S J, Christy A G, Génin J, et al. Mineralogical Magazine, 2012, 76(5), 1289. 55 Song L Q, Shi J J, Lu J, et al. Chemical Science, 2015, 6, 4850. 56 Cheng Z L, Liu Y Y, Cao B C. Materials Letters, 2016, 175, 215. 57 Sun J, Liu H M, Chen X, et al. Chemical Communications, 2012, 48(65), 8126. 58 Benzigar M R, Talapaneni S N, Joseph S, et al. Chemical Society Reviews, 2018, 47(8), 2680. 59 Liu G Y, Huang Z H, Kang F Y. China Non-metallic Mining Industry Herald, 2004(5), 29 (in Chinese). 刘贵阳,黄正宏,康飞宇. 中国非金属矿工业导刊, 2004(5), 29. 60 Liu G Y, Huang Z H, Kang F Y. New Carbon Materials, 2005, 20(1), 13 (in Chinese). 刘贵阳,黄正宏,康飞宇. 新型炭材料, 2005, 20(1), 13. 61 Liu G Y, Guo J M, Wang B S. Journal of Functional Materials, 2010, 41(12), 2134 (in Chinese). 刘贵阳,郭俊明,王宝森. 功能材料, 2010, 41(12), 2134. 62 Wang A P, Kang F Y, Guo Z C, et al. Carbon Techniques, 2006, 25(6), 23 (in Chinese). 王爱平,康飞宇,郭占成,等. 炭素技术, 2006, 25(6), 23. 63 Luo H M, Zhang F B, Zhao X, et al. Journal of Mate-rials Science Materials in Electronics, 2014, 25(1), 538. 64 Ma Z, Kyotani T, Tomita A. Chemical Communications, 2000(23), 2365. 65 Kyotani T, Ma Z, Tomita A. Carbon, 2003, 41(7), 1451. 66 Kim K, Lee T, Kwon Y, et al. Nature, 2016, 535(7610), 131. 67 Jing Y N, Jing Z Z, Ishida E H. Industrial & Engineering Chemistry Research, 2013, 52(50), 17865. 68 Yuan W W. Investigation on the preparation of diatomite-based porous mineral materials and their adsorption/catalysis performance on the organic pollutants. Ph.D. Thesis, University of Chinese Academy of Sciences, China, 2016 (in Chinese). 袁巍巍. 硅藻土基多孔矿物复合材料制备及其对有机污染物的吸附/催化性研究. 博士学位论文, 中国科学院大学, 2016. 69 Li D, Chen Y, Wang H Q, et al. Journal of the Taiwan Institute of Che-mical Engineers, 2014, 45(5), 2742. 70 Li A J, Chuan X Y, Huang D B, et al. Chinese Journal of Materials Research, 2017, 31(5), 321 (in Chinese). 李爱军,传秀云,黄杜斌,等. 材料研究学报, 2017, 31(5), 321. 71 Liu D, Yuan P, Tan D Y, et al. Journal of Colloid and Interface Science, 2012, 388(1), 176. 72 Liu D, Yuan W W, Yuan P, et al. Applied Surface Science, 2013, 282, 838. 73 Liu D, Yuan W W, Deng L L, et al. Journal of Colloid and Interface Science, 2014, 424, 22. 74 Liu D, Yuan P, Tan D Y, et al. Langmuir: the ACS Journal of Surfaces and Colloids, 2010, 26(24), 18624.