Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 20080165-11    https://doi.org/10.11896/cldb.20080165
  无机非金属及其复合材料 |
天然矿物为模板制备功能炭材料的研究进展
侯磊1, 韩学锋2, 邢宝林1,2, 曾会会1, 王振帅1, 郭晖2, 张传祥1,2, 谌伦建1,2
1 河南理工大学化学化工学院,河南省煤炭绿色转化重点实验室,河南 焦作 454003
2 煤炭安全生产河南省协同创新中心,河南 焦作 454003
Research Progress on the Preparation of Functional Carbon Materials Using Natural Minerals as Templates
HOU Lei1, HAN Xuefeng2, XING Baolin1,2, ZENG Huihui2, WANG Zhenshuai1, GUO Hui2, ZHANG Chuanxiang1,2, CHEN Lunjian1,2
1 Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003,Henan, China
2 Collaborative Innovation Center of Coal Work Safety, Henan Province, Jiaozuo 454003, Henan, China
下载:  全 文 ( PDF ) ( 12419KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 炭材料因具有特定的微观结构、可调控的孔隙特征及优良的物理化学稳定性等特点,已被广泛应用于环境治理、能量存储、生物医药、电子信息和国防科技等多个领域。炭材料的微观结构是决定其功能化应用性能的关键因素,因此,针对不同用途定向设计和可控制备具有特定功能的炭材料,并实现其微观结构的精准调控具有重要意义。在众多炭材料制备方法中,天然矿物模板法因在炭材料的微观结构精准调控、模板资源丰富、制备工艺高效等方面具有明显优势而备受关注。自然界中存在大量具有一维、二维、三维结构的天然矿物,且拥有特殊的微观形貌特征和发达的孔隙结构,为定向制备特定结构的炭材料提供了优质的天然模板。
本文简要介绍了天然矿物为模板制备功能炭材料的原理,并在此基础上重点综述了天然矿物模板法在功能炭材料制备及其微观结构调控等方面的研究现状与发展动态。主要体现在:(1)利用埃洛石、凹凸棒石和海泡石等一维纳米结构特征,通过碳质前驱体对天然模板形貌或孔道的选择性复制来制备碳纳米管、碳纳米棒和碳纳米纤维,并借助热处理和酸活化等手段对矿物模板进行预先改性以实现一维纳米炭材料形貌特征和孔隙结构的双重调控;(2)利用蛭石、蒙脱石和水滑石等二维层状结构特征,通过碳质分子在矿物层间限域空间内的定向排列来制备石墨烯和碳纳米片,并借助热处理和离子交换等手段对矿物模板进行适度扩层改性以实现二维纳米炭材料微观结构的有效调控;(3)利用沸石和硅藻土等三维立体架构多孔特征,通过多孔矿物的结构导向作用制备具有“微孔-中孔-大孔”层次孔结构的三维多孔炭,并借助CO2、H2O和KOH等协同活化造孔以实现多孔炭材料三维多孔结构的精准调控。最后,本文指出了利用天然矿物为模板制备功能炭材料所存在的主要问题,并对天然矿物模板法制备功能炭材料的未来发展趋势进行了展望,以期为高性能功能炭材料的研发与应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯磊
韩学锋
邢宝林
曾会会
王振帅
郭晖
张传祥
谌伦建
关键词:  天然矿物  模板法  功能炭材料  微观结构  孔隙结构  结构调控    
Abstract: Carbon materials have been widely applied in a variety of technological fields such as environmental remediation, energy storage and conversion, biomedicine, electronic information industry, and national defense science and technology due to their specific microstructure, adjustable pore structure, and excellent physical and chemical stability. In particular, the microstructure of carbon materials plays a determinant role in their practical application performance. Therefore, it is of great significance to develop specific functional carbon materials for different purposes and achieve precise control of their microstructure. Among all preparation methods of carbon materials, using natural minerals as templates has attracted considerable attention due to their overwhelming superiority in ease of operation, abundant resources, and precise regulation of the microstructure of carbon materials. Natural minerals that possess one-dimensional(1D), two-dimensional(2D), and three-dimensional(3D) morphology and unique porous structure can be chosen as a kind of ideal natural template for preparing carbon materials with distinctive structures.
This review introduces the principle of preparing function carbon materials from natural minerals as templates, with a focus on the current research status and development trends of the natural mineral template method in preparation and microstructure regulation of functional carbon materials. The paper mainly concerns three major research subfields. (1) 1D nanocarbon materials such as carbon nanotubes (CNTs), carbon nanorods (CNRs) and carbon nanofibers (CNFs) can be obtained via selectively replicating the morphology or pore channel of halloysite, attapulgite, and sepiolite by carbon precursors. Meanwhile, their morphology and pore structure can be easily controlled in the manner of heat treatment, acid activation and other template modification methods. (2) 2D nanocarbon materials like graphene and carbon nanosheets(CNSs) are synthesized by the ordered arrangement of carbon source in the interlayer space of vermiculite, montmorillonite and hydrotalcite. Furthermore, the expanding modification methods for layered mineral templates including thermal treatment and ion exchange have also been adopted to improve the 2D morphology of carbon materials. (3) 3D porous carbon with “micropore, mesopore, macropore” hierarchical porous structure is prepared through the structure guiding effect of zeolite, diatomite and other 3D interlinked porous network mineral templates. More significantly, the unique porous structure can be precisely regulated with the pore-building approaches of CO2, H2O and KOH activation. Besides, this paper points out the unresolved issues in the preparation of functional carbon materials using natural minerals as templates and prospect its future development trend, for the purpose of providing some guidance for the development and application of high-performance functional carbon materials.
Key words:  natural mineral    template method    functional carbon material    microstructure    pore structure    structure regulation
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  TB34  
基金资助: 国家自然科学基金项目(51974110;52074109);河南省高校科技创新人才支持计划项目(21HASTIT008);河南省科技攻关项目(202102210183);国家级大学生创新创业训练计划项目(201910460033;202010460063)
通讯作者:  baolinxing@hpu.edu.cn   
作者简介:  侯磊,2019年毕业于河南理工大学,获得工学学士学位。现为河南理工大学化学化工学院硕士研究生,主要研究方向为矿产资源综合利用。
邢宝林,河南理工大学化学化工学院教授、博士研究生导师。2011年12月在河南理工大学矿物加工工程专业取得博士学位,2014—2015年在澳大利亚纽卡斯尔大学做访问学者,2017—2020年在郑州大学进行博士后研究工作。主要从事功能炭材料研发与应用和矿产资源综合利用等方面的研究,发表论文60余篇。
引用本文:    
侯磊, 韩学锋, 邢宝林, 曾会会, 王振帅, 郭晖, 张传祥, 谌伦建. 天然矿物为模板制备功能炭材料的研究进展[J]. 材料导报, 2022, 36(12): 20080165-11.
HOU Lei, HAN Xuefeng, XING Baolin, ZENG Huihui, WANG Zhenshuai, GUO Hui, ZHANG Chuanxiang, CHEN Lunjian. Research Progress on the Preparation of Functional Carbon Materials Using Natural Minerals as Templates. Materials Reports, 2022, 36(12): 20080165-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080165  或          http://www.mater-rep.com/CN/Y2022/V36/I12/20080165
1 Terrones M, Botello-Méndez A R, Campos-Delgado J, et al. Nano Today, 2010, 5(4), 351.
2 Li Z H, Wang L, Li Y, et al. Composites Science and Technology, 2019, 179, 10.
3 Mauter M S, Elimelech M. Environmental Science & Technology, 2008, 42(16), 5843.
4 Cha C, Shin S R, Annabi N, et al. ACS Nano, 2013, 7(4), 2891.
5 Bayatsarmadi B, Zheng Y, Vasileff A, et al. Small, 2017, 13(21), 1700191.
6 Zheng P, Wu N Q. Chemistry-an Asian Journal, 2017, 12(18), 2343.
7 Chen Y H. Carbon Techniques, 2008, 27(6), 28 (in Chinese).
陈壹华. 炭素技术, 2008, 27(6), 28.
8 Liang C D, Li Z J, Dai S. Angewandte Chemie International Edition, 2008, 47(20), 3696.
9 Lu A H, Hao G P, Sun Q, et al. Macromolecular Chemistry and Physics, 2012, 213(10-11), 1107.
10 Li S R, Xie H, Shen J F, et al. Crystallography and mineralogy, Geolo-gical Publishing House, China, 2008 (in Chinese).
李胜荣,许虹,申俊峰,等. 结晶学及矿物学, 地质出版社, 2008.
11 Zhao L, Dong F Q, Wang G H, et al. China Powder Science and Techno-logy, 2008, 14(1), 46 (in Chinese).
赵磊,董发勤,王光华,等. 中国粉体技术, 2008, 14(1), 46.
12 Chen T H, Xie Q Q, Liu H B, et al. Earth Science, 2018, 43(5), 1439 (in Chinese).
陈天虎,谢巧勤,刘海波,等. 地球科学, 2018, 43(5), 1439.
13 Yang Q. Study on silanization of alkalitreated halloysite nanotubes. Master's Thesis, Inner Mongolia University, China, 2019 (in Chinese).
杨青. 碱活化埃洛石纳米管表面硅烷化改性研究. 硕士学位论文, 内蒙古大学, 2019.
14 Li A J, Chuan X Y, Cao X, et al. Journal of Functional Materials, 2017, 48(2), 2063.
李爱军,传秀云,曹曦,等. 功能材料, 2017, 48(2), 2063.
15 Liu Y H, Guo Y H, Wu J Y, et al. Chemical Journal of Chinese Universities, 2008(6), 1171.
刘亚辉,郭玉华,吴静怡,等. 高等学校化学学报, 2008(6), 1171.
16 Zheng S L. Non-metallic mineral materials, Chemical Industry Press, China, 2007 (in Chinese).
郑水林. 非金属矿物材料, 化学工业出版社, 2007.
17 Iijima S. Nature, 1991, 354, 56.
18 Lu X F, Wang K, Cui Z H. Materials Reports, 2022, 36(9), 20120188 (in Chinese).
卢学峰,王宽,崔志红.材料导报, 2022, 36(9), 20120188.
19 Pastorkova K, Jesenak K, Kadlecikova M, et al. Applied Surface Science, 2012, 258(7), 2661.
20 Su D S. ChemSusChem, 2009, 2(11), 1009.
21 Nie J Q, Zhang Q, Zhao M Q, et al. Carbon, 2011, 49(5), 1568.
22 Pasbakhsh P, Churchman G J, Keeling J L. Applied Clay Science, 2013, 74, 47.
23 Tharmavaram M, Pandey G, Rawtani D. Advances in Colloid & Interface Science, 2018, 261, 82.
24 Cheng Z L, Liu Y Y, Liu Z. Surface & Coatings Technology, 2016, 307, 633.
25 Liu Z, Cheng Z L, Liu Y Y. Micro & Nano Letters, 2016, 12(4), 236.
26 Zhou S H, Chuan X Y. Journal of Inorganic Materials, 2014, 29(6), 584.
周述慧,传秀云. 无机材料学报, 2014, 29(6), 584.
27 Liu W J, Ru Q X, Zuo S X, et al. Applied Surface Science, 2019, 469, 269.
28 Liu W J, Yuan K, Ru Q X, et al. Arabian Journal of Chemistry, 2020, 13(4), 4954.
29 Pushpaletha P, Lalithambika M. Applied Clay Science, 2011, 51(4), 424.
30 Zhang X L, Jiang W P, Wu X P, et al. CIESC Journal, 2012, 63(3), 916 (in Chinese).
张先龙,姜伟平,吴雪平,等. 化工学报, 2012, 63(3), 916.
31 Sun L, Yan C J, Chen Y, et al. Journal of Non-Crystalline Solids, 2012, 358(18), 2723.
32 Shi L M, Yao J F, Jiang J L, et al. Microporous and Mesoporous Mate-rials, 2009, 122(1), 294.
33 Zhong L F, Tang A D, Yan P, et al. Journal of Colloid and Interface Science, 2019, 537, 450.
34 Fernández-Saavedra R, Aranda P, Ruiz-Hitzky E. Advanced Functional Materials, 2010, 14(1), 77.
35 Brigatti M F, Galán E, Theng B K G. Developments in Clay Science, 2013, 5, 2.
36 Sandí G, Carrado K A, Winans R E, et al. Journal of the Electrochemical Society, 1999, 146(10), 3644.
37 Back C K, Sandí G, Prakash J, et al. Journal of Physical Chemistry B, 2006, 110(33), 16225.
38 Singh V, Joung D, Zhai L, et al. Progress in Materials Science, 2011, 56(8), 1178.
39 Cai X K, Luo Y T, Liu B L, et al. Chemical Society Reviews, 2018, 47(16), 6224.
40 Zhu T T, Zhou C H, Kabwe F B, et al. Applied Clay Science, 2019, 169, 48.
41 Qing Y H, Su X L, Wang Y B, et al. Materials Reports A:Review Papers, 2020, 34(10), 19018 (in Chinese)
卿艳红,苏小丽,王钺博,等. 材料导报:综述篇, 2020, 34(10), 19018.
42 Kyotani T, Sonobe N, Tomita A. Nature, 1988, 331(6154), 331.
43 Bakandritsos A, Steriotis T, Petridis D. Chemistry of Materials, 2004, 16(8), 1551.
44 Zhu R L, Chen Q Z, Wang X, et al. RSC Advances, 2015, 5(10), 7522.
45 Chen Q Z, Liu H M, Zhu R L, et al. Microporous and Mesoporous Mate-rials, 2016, 225, 137.
46 Fan X M, Yu C, Yang J, et al. Advanced Energy Materials, 2015, 5(7),1401761
47 Wang L J. The study of structural modification, organic intercalation, and microwave expansion of vermiculite. Ph.D. Thesis, China University of Geosciences(Beijing), China, 2014 (in Chinese).
王丽娟. 蛭石结构改性、有机插层及微波膨胀研究. 博士学位论文, 中国地质大学(北京), 2014.
48 Wang Z S, Xing B L, Zeng H H, et al. Applied Surface Science, 2021, 547, 149228.
49 Xu C G, Ning G Q, Zhu X, et al. Carbon, 2013, 62, 213.
50 Ning G Q, Xu C G, Cao Y M, et al. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(2), 408.
51 Lyu H Y, Wang L C, Yang K Y, et al. Journal of Shanghai University of Electric Power, 2020, 36(1), 57.
吕泓颖,王罗春,杨凯艳,等. 上海电力学院学报, 2020, 36(1), 57.
52 Bukhtiyarova M V. Journal of Solid State Chemistry, 2019, 269, 494.
53 Baskaran T, Christopher J, Sakthivel A. RSC Advances, 2015, 5(120), 98853.
54 Mills S J, Christy A G, Génin J, et al. Mineralogical Magazine, 2012, 76(5), 1289.
55 Song L Q, Shi J J, Lu J, et al. Chemical Science, 2015, 6, 4850.
56 Cheng Z L, Liu Y Y, Cao B C. Materials Letters, 2016, 175, 215.
57 Sun J, Liu H M, Chen X, et al. Chemical Communications, 2012, 48(65), 8126.
58 Benzigar M R, Talapaneni S N, Joseph S, et al. Chemical Society Reviews, 2018, 47(8), 2680.
59 Liu G Y, Huang Z H, Kang F Y. China Non-metallic Mining Industry Herald, 2004(5), 29 (in Chinese).
刘贵阳,黄正宏,康飞宇. 中国非金属矿工业导刊, 2004(5), 29.
60 Liu G Y, Huang Z H, Kang F Y. New Carbon Materials, 2005, 20(1), 13 (in Chinese).
刘贵阳,黄正宏,康飞宇. 新型炭材料, 2005, 20(1), 13.
61 Liu G Y, Guo J M, Wang B S. Journal of Functional Materials, 2010, 41(12), 2134 (in Chinese).
刘贵阳,郭俊明,王宝森. 功能材料, 2010, 41(12), 2134.
62 Wang A P, Kang F Y, Guo Z C, et al. Carbon Techniques, 2006, 25(6), 23 (in Chinese).
王爱平,康飞宇,郭占成,等. 炭素技术, 2006, 25(6), 23.
63 Luo H M, Zhang F B, Zhao X, et al. Journal of Mate-rials Science Materials in Electronics, 2014, 25(1), 538.
64 Ma Z, Kyotani T, Tomita A. Chemical Communications, 2000(23), 2365.
65 Kyotani T, Ma Z, Tomita A. Carbon, 2003, 41(7), 1451.
66 Kim K, Lee T, Kwon Y, et al. Nature, 2016, 535(7610), 131.
67 Jing Y N, Jing Z Z, Ishida E H. Industrial & Engineering Chemistry Research, 2013, 52(50), 17865.
68 Yuan W W. Investigation on the preparation of diatomite-based porous mineral materials and their adsorption/catalysis performance on the organic pollutants. Ph.D. Thesis, University of Chinese Academy of Sciences, China, 2016 (in Chinese).
袁巍巍. 硅藻土基多孔矿物复合材料制备及其对有机污染物的吸附/催化性研究. 博士学位论文, 中国科学院大学, 2016.
69 Li D, Chen Y, Wang H Q, et al. Journal of the Taiwan Institute of Che-mical Engineers, 2014, 45(5), 2742.
70 Li A J, Chuan X Y, Huang D B, et al. Chinese Journal of Materials Research, 2017, 31(5), 321 (in Chinese).
李爱军,传秀云,黄杜斌,等. 材料研究学报, 2017, 31(5), 321.
71 Liu D, Yuan P, Tan D Y, et al. Journal of Colloid and Interface Science, 2012, 388(1), 176.
72 Liu D, Yuan W W, Yuan P, et al. Applied Surface Science, 2013, 282, 838.
73 Liu D, Yuan W W, Deng L L, et al. Journal of Colloid and Interface Science, 2014, 424, 22.
74 Liu D, Yuan P, Tan D Y, et al. Langmuir: the ACS Journal of Surfaces and Colloids, 2010, 26(24), 18624.
[1] 刘川北, 高建明, 孟礼元, 刘来宝, 张礼华, 张红平, 罗旭. 聚合物和纤维对石膏基材料早期水化与浆体微结构的影响[J]. 材料导报, 2022, 36(8): 20090176-7.
[2] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[3] 范青杰, 杨子健, 赖仕全, 岳莉, 朱亚明, 赵雪飞. 喹啉沥青的合成及其富氮衍生炭的微观结构研究[J]. 材料导报, 2022, 36(4): 20120072-6.
[4] 蔡雨晨, 冯可芹, 周博芳, 陈思潭. Nb对Zr基钎料及钎焊连接SiC陶瓷的影响[J]. 材料导报, 2022, 36(3): 20090283-5.
[5] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[6] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[7] 王志航, 许金余, 刘高杰, 朱从进. 紫外老化对聚合物基复合材料剪切性能及孔隙结构的影响[J]. 材料导报, 2022, 36(2): 20100143-6.
[8] 王英, 杨熙, 姜继斌, 李萍, 念腾飞. 动水冲刷作用下季冻区沥青混合料水损害发展的细观过程[J]. 材料导报, 2022, 36(10): 21040158-7.
[9] 张玉宝, 李志刚, 王艺, 蒋继成, 姚钢, 赵弘韬. 工作气压对磁控溅射TaN薄膜微结构和性能的影响[J]. 材料导报, 2021, 35(z2): 60-63.
[10] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[11] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[12] 戴宗妙, 彭雪峰, 刘喜宗, 吴恒. 铺层方式对碳纤维预浸料不同温度下压缩特性的影响[J]. 材料导报, 2021, 35(z2): 564-569.
[13] 石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
[14] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[15] 倪航天, 黄煜镔. 固化土微观测试评价方法述评[J]. 材料导报, 2021, 35(9): 9168-9173.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed