Please wait a minute...
材料导报  2022, Vol. 36 Issue (17): 21060143-7    https://doi.org/10.11896/cldb.21060143
  金属与金属基复合材料 |
不同温度低压真空渗氮对新型TiZr基合金微观组织及摩擦学性能的影响
吕源远1,2, 岳赟1,*, 杜志浩1,2, 杜三明1, 倪锋1, 张永振1
1 河南科技大学高端轴承摩擦学技术与应用国家地方联合工程实验室, 河南 洛阳 471023
2 河南科技大学材料科学与工程学院, 河南 洛阳 471023
Effect of Low-pressure Vacuum Nitriding Temperatures on Microstructure and Tribological Properties of Novel TiZr-based Alloy
LYU Yuanyuan1,2, YUE Yun1,*, DU Zhihao1,2, DU Sanming1, NI Feng1, ZHANG Yongzhen1
1 National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471023, Henan, China
2 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
下载:  全 文 ( PDF ) ( 12197KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以新型钛锆基合金Ti-47Zr-5Al-3V(以下称47Zr)为研究对象,研究了不同温度(650 ℃、700 ℃、750 ℃、800 ℃、850 ℃)低压真空渗氮对合金的摩擦学性能的影响。使用扫描电子显微镜(SEM)和X射线衍射仪(XRD)、显微维氏硬度计及UMT-2摩擦磨损试验机对低压真空渗氮后合金的组织、物相、硬度及摩擦磨损性能进行分析和测试。结果表明,低压真空渗氮后,47Zr合金表面物相以Ti2N、ZrN化合物为主,硬度最高可达710HV0.05,表面平均硬度与基体相比提升近285HV0.05,渗氮影响层的深度随着温度的升高而增加。不同温度低压真空渗氮47Zr合金中,耐磨性较好的为经750 ℃和800 ℃渗氮的样品。相较于原始样品,750 ℃低压真空渗氮后,样品的平均摩擦系数减小57.14%,磨损率在固定载荷(30 N)下降低29.74%;800 ℃低压真空渗氮后,样品的平均摩擦系数减小了45.71%,磨损率下降了33.74%。合金的磨损特征表明不同温度低压真空渗氮的47Zr合金在室温干摩擦条件下的磨损机制均为磨粒磨损和粘着磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕源远
岳赟
杜志浩
杜三明
倪锋
张永振
关键词:  钛锆基合金  渗氮  组织  摩擦磨损    
Abstract: Novel TiZr-based alloy Ti-47Zr-5Al-3V (referred to as 47Zr) was studied to reveal the effect of low-pressure vacuum nitriding at different temperatures (650 ℃, 700 ℃, 750 ℃, 800 ℃ and 850 ℃) on its tribological properties. Microstructure, phase composition, hardness and tribological properties of 47Zr alloy with low-pressure vacuum nitriding were analyzed and tested by scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-Vickers and UMT-2 multifunctional tribometer. The results indicate that the surface phase composition of nitriding 47Zr alloy is dominated by Ti2N and ZrN compounds, and its hardness is high up to 710HV0.05. Compared with the substrate, the average hardness of the surface increases by nearly 285HV0.05. The depth of nitrided layer increases with nitriding temperature rising. Compared with the untreated samples, the average coefficient of friction (COF) decreases by 57.14% through low-pressure vacuum nitriding at 750 ℃, and the wear rate decreases by 29.74% under a normal load of 30 N. Through nitriding at 800 ℃, the average COF and wear rate decrease by 45.71% and 33.74%, respectively. The wear characteristics show that the wear mechanism of the low-pressure vacuum nitrided 47Zr alloy at different temperature is abrasive wear and adhesive wear under dry sliding condition.
Key words:  TiZr-based alloy    nitriding    microstructure    friction and wear
出版日期:  2022-09-10      发布日期:  2022-09-10
ZTFLH:  TB333  
基金资助: 国家自然科学基金(51801054)
通讯作者:  *yueyunbw@haust.edu.cn   
作者简介:  吕源远,河南科技大学材料工程在读硕士。2019年获得河南科技大学金属材料工程学士学位。目前从事新型钛锆基合金表面改性及摩擦学性能研究。
岳赟,河南科技大学讲师。2017年7月毕业于燕山大学,获材料学博士学位。同年加入河南科技大学高端轴承摩擦学技术与应用国家地方联合工程实验室工作至今,主要从事钛合金表面改性及摩擦学性能表征。在国内外重要期刊发表文章30余篇,申报发明专利10余项。
引用本文:    
吕源远, 岳赟, 杜志浩, 杜三明, 倪锋, 张永振. 不同温度低压真空渗氮对新型TiZr基合金微观组织及摩擦学性能的影响[J]. 材料导报, 2022, 36(17): 21060143-7.
LYU Yuanyuan, YUE Yun, DU Zhihao, DU Sanming, NI Feng, ZHANG Yongzhen. Effect of Low-pressure Vacuum Nitriding Temperatures on Microstructure and Tribological Properties of Novel TiZr-based Alloy. Materials Reports, 2022, 36(17): 21060143-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060143  或          http://www.mater-rep.com/CN/Y2022/V36/I17/21060143
1 Li C Z, Fu B G, Liu J H, et al. Materials Reports, 2018, 32(Z1), 410(in Chinese).
李朝志, 付彬国, 刘金海, 等.材料导报, 2018, 32(Z1), 410.
2 Philip J T, Mathew J, Kuriachen B. Friction, 2019, 7(6), 497.
3 Szymkiewicz K, Morgiel J, Maj U, et al. Journal of Alloys and Compounds, 2020, 845, 156320.
4 Zhang Z Q, Ouyang X P, Liao B, et al. Acta Physica Sinica, 2020, 69(10), 61(in Chinese).
张志强, 欧阳晓平, 廖斌, 等.物理学报, 2020, 69(10), 61.
5 Picka M, Gradzka-Dahlke M. Reviews on Advanced Materials Science, 2016, 46(1), 86.
6 Anandan C, Babu P D, Mohan L. Journal of Materials Engineering & Performance, 2013, 22(9), 2623.
7 Lisiecki A, Piwnik J. Archives of Metallurgy & Materials, 2016, 61(2), 543.
8 Matsumoto O, Konuma M, Kanzaki Y. Journal of the Less-Common Metals, 1982, 84, 157.
9 Agzamov R D, Tagirov A F, Nikolaev A A, et al. Journal of Physics Conference Series, 2019, 1393, 012066.
10 Attabi S, Mokhtari M, Taibi Y, et al. Journal of Bio & Tribo Corrosion, 2018, 5, 2.
11 Li W S, Zhang W B, Wu Y R, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(4), 115 (in Chinese).
李文生, 张文斌, 武彦荣, 等.中国有色金属学报, 2020, 30(4), 115.
12 Zhou J, Yang C, Ma Y Q, et al. Heat Treatment of Metals, 2018, 43(9), 80 (in Chinese).
周军, 杨闯, 马亚芹, 等. 金属热处理, 2018, 43(9), 80.
13 Li X L, Zhang Y E, Li J P. Journal of Harbin Bearing, 2004, 25(4), 18 (in Chinese).
李兴林, 张永恩, 李建平.哈尔滨轴承, 2004, 25(4), 18.
14 Negut G, Ancuta M, Radu V, et al. Journal of Nuclear Materials, 2007, 362(2-3), 300.
15 Jing R. Preparation, structure and properties of high strength TiZr-based alloy. Ph.D. Thesis, Yanshan University, China, 2013(in Chinese).
景然. 高强度TiZrAlV合金的制备及组织性能研究. 博士学位论文, 燕山大学, 2013.
16 Lin H L. Double glow plasma nitriding of Zr46Ti44Al5V5 alloy and its properties. Master's Thesis, Yanshan University, China, 2016(in Chinese).
蔺汉龙. Zr46Ti44Al5V5 合金双层辉光离子渗氮及性能研究. 硕士学位论文, 燕山大学, 2016.
17 Zhang X F. Microstructure and tribological property of thermal oxidation films on ZrTi alloy. Master's Thesis, Harbin Institute of Technology, China, 2014(in Chinese).
张雪峰. 锆钛合金表面热氧化膜的显微组织和摩擦学性能. 硕士学位论文, 哈尔滨工业大学, 2014.
18 Mi G F, Kong L A, Yin D S, et al. Foundry Technology, 2005, 26(2), 106(in Chinese).
米国发, 孔留安, 尹冬松, 等.铸造技术, 2005, 26(2), 106.
19 Sun X Y, Han P B, Yue Y, et al. Hebei Journal of Industrial Science and Technology, 2019, 36(6), 377(in Chinese).
孙信阳, 韩鹏彪, 岳赟, 等.河北工业科技, 2019, 36(6), 377.
20 Zhang X F. Influence of nanocrystallization on gas nitriding and properties of titanium alloy(TC4). Master's Thesis, Xi'an University of Techno-logy, China, 2011(in Chinese).
张小凡. 钛合金(TC4)表面纳米化对气体渗氮及性能的影响. 硕士学位论文, 西安理工大学, 2011.
21 Zhecheva A, Malinov S, Sha W. Surface & Coatings Technology, 2006, 201(6), 2467.
22 Yang C, Peng X D, Liu J, et al. Joural of Materials Engineering, 2015, 43(3), 78(in Chinese).
杨闯, 彭晓东, 刘静, 等.材料工程, 2015, 43(3),78.
23 Siyahjani F, Atar E, Cimenoglu H, et al. Metal Science & Heat Treatment, 2016, 58(3-4), 170.
24 Bao X C, Cheng L, Chen X, et al. Heat Treatment of Metals, 2019, 44(6), 137(in Chinese).
鲍学淳, 程礼, 陈煊, 等. 金属热处理, 2019, 44(6), 137.
25 Wang J L. Research on nonequilibrium microstructure of Ti6Al4V tita-nium alloy. Master's Thesis, Wuhan University of Science and Technology, China, 2010(in Chinese).
王锦林. Ti6Al4V钛合金非平衡显微组织的研究. 硕士学位论文, 武汉科技大学, 2010.
26 Luk'Yanenko О H, Pohrelyuk I М, Kravchyshyn T М, et al. Materials Science, 2020, 55(7), 737.
27 Yang K, Shi X L, Huang Y C, et al. Materials Chemistry and Physics, 2017, 186, 317.
28 Bai W, Ma L Q, Chen J Q, et al. Lubrication Engineering, 2020, 45(6), 49(in Chinese).
白威, 马廉洁, 陈景强, 等.润滑与密封, 2020, 45(6), 49.
29 Ban S L, Zhang K, Shui L. Journal of Shenyang Ligong University, 2020, 39(3), 40(in Chinese).
班盛林, 张凯, 水丽.沈阳理工大学学报, 2020, 39(3), 40.
30 Wei N A, Wei C B, Dai M J, et al. Surface Technology, 2020, 49(3), 159(in Chinese).
韦乃安, 韦春贝, 代明江, 等.表面技术, 2020, 49(3), 159.
31 Saeidi F, Meylan B, Hoffmann P, et al. Wear, 2016, 348-349, 17.
32 Sun Y F, Zuo P P, Ji J, et al. Surface Technology, 2021, 50(4), 198(in Chinese).
孙宇锋, 左鹏鹏, 计杰, 等.表面技术, 2021, 50(4), 198.
[1] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[2] 王艺橦, 潘栋, 侯华兴, 郭庆涛, 李天怡, 厉文墨, 肖玉宝, 江坤. 高能电脉冲处理对金属材料强化和增韧作用影响的研究新进展[J]. 材料导报, 2022, 36(Z1): 21080093-7.
[3] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[4] 刘鹏, 马吉恩, 方攸同, 李刚. 多次补焊对304不锈钢焊接接头性能的影响[J]. 材料导报, 2022, 36(Z1): 21120176-5.
[5] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[6] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[7] 史天宇, 孔维雄, 陈雨琳, 宁保群, 董治中. 新型高氮马氏体耐热铸钢的热处理及相变解析[J]. 材料导报, 2022, 36(Z1): 20120084-6.
[8] 王鼎, 周艳文, 张开策, 粟志伟, 杜峰, 武俊生, 郭诚. 离子氮化中氮在典型钢中的扩散行为研究[J]. 材料导报, 2022, 36(Z1): 22010109-6.
[9] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[10] 付兵, 项利, 乔家龙, 刘静, 仇圣桃. 薄板坯连铸连轧流程制备低温Hi-B钢织构的演变及Goss晶粒的发展[J]. 材料导报, 2022, 36(9): 20120130-8.
[11] 曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
[12] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[13] 汪勇, 李光强, 刘玉龙, 高洋, 郭小龙, 朱诚意. Nb微合金化对取向硅钢常化板中析出物特征及组织和织构的影响[J]. 材料导报, 2022, 36(7): 20110126-6.
[14] 李朝阳, 黄光杰, 曹玲飞, 曹宇, 林林. 升温速率对AA2060铝锂合金中间形变热处理微观组织的影响[J]. 材料导报, 2022, 36(7): 21020008-7.
[15] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed