Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 21040187-7    https://doi.org/10.11896/cldb.21040187
  高分子与聚合物基复合材料 |
原子氧辐照对含苯并咪唑结构聚酰亚胺摩擦学性能影响研究
王彦明1,2,*, 高晓红1,3, 李萍1, 王廷梅2, 王齐华2
1 河北工程大学材料科学与工程学院,河北省改性塑料技术创新中心,河北 邯郸 056038
2 中国科学院兰州化学物理研究所,兰州 730000
3 兰州理工大学石油化工学院,兰州 730050
Effect of Atomic Oxygen Irradiation on Tribological Performance of a Polyimide Containing Benzimidazole Groups
WANG Yanming1,2,*, GAO Xiaohong1,3, LI Ping1, WANG Tingmei2, WANG Qihua2
1 College of Materials Science and Engineering, Technology Innovation Center of Modified Plastics of Hebei Province, Hebei University of Engineering, Handan 056038, Hebei, China
2 Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
3 School of Chemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 12261KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚合物及其复合材料的抗原子氧辐照性是影响其在空间装备应用过程中可靠性和安全性的重要因素。研究表明含硫、氮等杂原子的芳杂环聚合物具有一定的抗原子氧辐照性能。因此,从聚合物分子链角度出发设计并制备具有抗辐照性能的聚合物是一种有效的途径。目前,关于聚醚砜、聚砜及聚酰亚胺等聚合物抗辐照性能的研究表明,引入具有良好耐热性能的化学基团能有效提高聚合物的抗原子氧辐照性能。聚苯并咪唑因结构中特殊的苯并咪唑结构赋予了其良好的耐热性能,使其表现出良好的抗原子氧辐照的潜质。但聚苯并咪唑的合成条件较为苛刻,因此将苯并咪唑结构引入聚酰亚胺的主链中成为了一种改善其抗辐照性能的良好解决方案。本工作采用传统的两步法合成了一种含苯并咪唑结构的聚酰亚胺(PMI),研究了聚合物薄膜在原子氧辐照(AO)前后的力学性能和摩擦学性能,并与不含苯并咪唑基团的聚酰亚胺(YS-20)薄膜进行了比较。结果表明,含苯并咪唑结构聚酰亚胺的抗氧化性能和力学性能均优于不含苯并咪唑基团的聚酰亚胺(YS-20)。通过对比辐照时间对薄膜的影响,发现不同辐照时间后,PMI系列表现出较低的粗糙度。这一结果通过表面三维形貌图也得到了证明。通过对辐照后表面C和O元素价态和组成分析结果表明,与YS-20相比,PMI表现出较低的碳化程度。同时主链中芳杂环结构也提高了聚合物的耐温性能和机械强度,其中PMI的玻璃化转变温度高达365 ℃。通过球盘摩擦实验考察了辐照前后摩擦性能的演变。结果表明,由于抗AO性能的不同,聚合物薄膜的显微硬度和模量呈现出不同的变化趋势,导致AO辐照后的摩擦学性能不同。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王彦明
高晓红
李萍
王廷梅
王齐华
关键词:  含苯并咪唑聚酰亚胺  原子氧辐照  摩擦性能  力学性能    
Abstract: Anti-radiation property of atomic oxygen(AO) plays an important role in polymers and their complexes' reliability and safety in the application of space equipment. The studies show that polymers with aromatic heterocyclic group or structure such as sulfur and nitrogen can present anti-irradiation property to some extent. Therefore, the molecular structure can be designed in order to enhance the polymer's anti-irradiation in essence. Now, the research on the radiation resistance of polymers such as polyethersulfone, polysulfone and polyimide shows that introducing chemical groups with excellent heat-resistance can effectively improve the anti-irradiation property. The benzimidazole structure endows polybenzimi-dazole the good potential to anti atomic oxygen irradiation, due to the superior heat-resistance. However, subject to the complex synthesis conditions of polybenzimidazole, synthesis of polyimide with benzimidazole structure in the backbone becomes the better choice. A polyimide containing benzimidazole groups (PMI) was synthesized with a traditional two-step method. The mechanical and tribological properties of the PMI film were investigated before and after atomic oxygen (AO) irradiation, and were subsequently compared with those of the polyimide without the ben-zimidazole group. The results showed that PMI presented superior anti-oxidation and mechanical properties to those of the polyimide without the benzimidazole group. Furthermore, a smoother surface was verified using the scanning electron microscopy (SEM) scans and 3D profile images, which indicated the better anti-AO irradiation properties of the PMI film. From analyzing the valence and composition of C and O elements on the irradiated surface, the results show that PMI shows a lower degree of carbonization than YS-20. At the same time, the aromatic heterocyclic structure in the main chain also improves the temperature resistance and mechanical strength of the polymer. The glass transition temperature of PMI is as high as 365 ℃. The evolution of friction properties before and after irradiation was investigated by ball disk friction experiment. Owing to different anti-AO irradiation properties, the micro-hardness and modulus of the polymer presented different variation trends, which resulted in different tribological performances after AO irradiation.
Key words:  polyimide with benzimidazole group    atomic irradiation    tribology    mechanical property
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  TQ31  
  TH117  
基金资助: 国家自然科学基金(21466009;51063003;51805140);河北省自然科学基金(E2018402121);中央引导地方科技发展资金项目(206Z1201G;216Z1202G);邯郸市科技计划项目(19422111008-22)
通讯作者:  * tangwangym@163.com   
引用本文:    
王彦明, 高晓红, 李萍, 王廷梅, 王齐华. 原子氧辐照对含苯并咪唑结构聚酰亚胺摩擦学性能影响研究[J]. 材料导报, 2023, 37(4): 21040187-7.
WANG Yanming, GAO Xiaohong, LI Ping, WANG Tingmei, WANG Qihua. Effect of Atomic Oxygen Irradiation on Tribological Performance of a Polyimide Containing Benzimidazole Groups. Materials Reports, 2023, 37(4): 21040187-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040187  或          http://www.mater-rep.com/CN/Y2023/V37/I4/21040187
1 Vogel H, Marvel C S. Journal of Polymer Science Part A-Polymer Chemistry, 1961, 50(154), 511.
2 Serad G A. Journal of Polymer Science Part A-Polymer Chemistry, 1996, 34(7), 1123.
3 Zhang Y, Qi SH, Zhang F, et al. Applied Surface Science, 2011, 258(2), 732.
4 Banihashemi A, Atabaki F. European Polymer Journal, 2002, 38, 2119.
5 Seel D C, Benicewicz B C. Journal of Membrane Science, 2012, 405, 57.
6 Wang G, Xiao G Y, Yan D Y. Journal of Membrane Science, 2011, 369, 388.
7 Mader J A, Benicewicz B C. Fuel Cells, 2011, 11, 222.
8 Tan N, Xiao G Y, Yan D Y, et al. Journal of Membrane Science, 2010, 353, 51.
9 Li Q F, Rudbeck H C, Chromik A, et al. Journal of Membrane Science, 2010, 347, 260.
10 Xu N, Guo X X, Fang J H, et al. Journal of Polymer Science Part A-Polymer Chemistry,2009, 47, 6992.
11 Qian G Q, Smith D W. Polymer, 2009, 50, 3911.
12 Connell J W, Smith J G, Hergenrother P M. Polymer, 1995, 36, 5.
13 Zhang Y, Qi S H, Zhang F. Journal of Reinforced Plastics Composites,2012, 31, (13), 915.
14 Lv M, Wang Y M, Wang Q H, et al. Radiation Physics and Chemistry, 2015, 107, 171.
15 Zhao G, Liu B X, Wang Q H, et al. Surface and Interface Analysis, 2013, 45, 605.
16 Dever J A, Miller S K, Sechkar E A, et al . High Performance Polymer, 2008, 20, 371.
17 Connell J W. High Performance Polymer, 2000, 12, 43.
18 Wang Y M, Wang T M, Wang Q H. Tribology International, 2014, 78, 47.
19 Pei X Q, Li Y, Wang Q H, et al. Applied Surface Science, 2009, 255, 5932.
20 Kalácska G, Zsidai L, Keresztes R, et al. Wear. 2012, 290-291, 66.
21 Kalácska G, Zsidai L, Kereszturi K, et al. Applied Surface Science, 2009, 255, 5847.
22 Kim Y, Limanto F, Lee D H, et al. Langmuir. 2012, 28, 2922.
23 Miyoshi K. Tribology International, 1999, 32, 605.
24 Jones J W, Eiss Jr N S. American Chemical Society, 1985, 287, 135.
25 Chitsaz-zadeh M R, Eiss Jr N S. Wear, 1986, 110, 359.
[1] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[2] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[3] 郝思洁, 褚强, 李文亚, 杨夏炜, 邹阳帆. 电脉冲处理对金属材料组织、力学性能影响的研究进展[J]. 材料导报, 2023, 37(4): 21030039-9.
[4] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[5] 吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
[6] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[7] 邱玺, 高士鑫, 李权, 李垣明, 李文杰, 辛勇. 热管反应堆用钼铼合金的研究进展[J]. 材料导报, 2023, 37(2): 21020011-9.
[8] 杨东辉, 唐帅, 吴子彬, 秦克, 张海涛, 崔建忠, Hiromi Nagaumi. 高锌铝合金合金化和加工工艺的研究现状及发展趋势[J]. 材料导报, 2023, 37(2): 21010126-6.
[9] 杨正宏, 刘思佳, 吴凯, 于龙, 潘峰. 纤维增强磷酸镁水泥基复合材料研究进展[J]. 材料导报, 2023, 37(1): 20110150-7.
[10] 黄智恒, 薛松柏, 王博, 张帆, 龙伟民. Sm对SAl 4043铝合金焊丝的组织、性能及氢含量的影响[J]. 材料导报, 2023, 37(1): 21080231-6.
[11] 薛海涛, 李涛, 郭卫兵, 陈翠欣, 赵江龙, 丁志杰. 钎焊参数对Al2O3陶瓷/304不锈钢接头组织和性能的影响[J]. 材料导报, 2023, 37(1): 21090089-5.
[12] 刘忠柱, 赵伟, 潘玮, 李睢水, 郑国强, 李倩. 多壁碳纳米管改性等规聚丙烯复合材料的结构及性能研究[J]. 材料导报, 2023, 37(1): 20100004-6.
[13] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[14] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[15] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed