Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 21030294-7    https://doi.org/10.11896/cldb.21030294
  金属与金属基复合材料 |
热处理对大变形量Zn-1.65Cu-0.15Ti合金的组织和性能的影响
徐英卓1,2, 王秀凯1,2, 常麟晖1,2, 陈步明1,2,3,*, 黄惠1,2,3, 何亚鹏1,2,3, 郭忠诚1,2,3
1 昆明理工大学冶金与能源工程学院,昆明 650093
2 云南省冶金电极材料工程技术研究中心,昆明 650106
3 昆明理工恒达科技股份有限公司,昆明 650106
Effect of Heat Treatment on Microstructure and Properties of Zn-1.65Cu-0.15Ti with Large Deformation
XU Yingzhuo1,2, WANG Xiukai1,2, CHANG Linhui1,2, CHEN Buming1,2,3,*, HUANG Hui1,2,3, HE Yapeng1,2,3, GUO Zhongcheng1,2,3
1 Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 Research Center of Metallurgical Electrode Materials Engineering Technology of Yunnan Province, Kunming 650106, China
3 Kunming Hendera Science and Technology Co., Ltd., Kunming 650106, China
下载:  全 文 ( PDF ) ( 10494KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本实验采用中频感应熔炼炉制备锌铜钛合金,通过热轧工艺制备了变形Zn-Cu-Ti合金。首先分析了合金的显微组织和拉伸性能随着变形量的变化,发现随着变形量的增加金相组织变得越来越不明显,轧制的方向越来越清晰。96.7%变形量的合金延伸率最高,可达到54.7%。通过电化学分析发现,合金变形量越大,合金板材的耐蚀性越好。接着进一步研究了不同的热处理温度和时间对合金力学性能以及微观组织的影响。合金在210 ℃经过热处理,硬度从46HV提高至73HV,在温度稍低时,150~180 ℃区间内硬度增大的趋势更明显。高温热处理有利于合金抗拉强度的提高,在240 ℃下热处理保温2 h,抗拉强度和延伸率分别提高约29%、20%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐英卓
王秀凯
常麟晖
陈步明
黄惠
何亚鹏
郭忠诚
关键词:  锌铜钛合金  力学性能  热处理  微观结构  电化学性能    
Abstract: In this work, the medium frequency induction melting furnace was used to prepare a zinc-copper-titanium alloy, and deformed Zn-Cu-Ti alloy was prepared by a hot rolling process. Firstly, the changes of microstructure and tensile properties of alloys with deformation were analyzed. With the increase of deformation, the microstructure becomes less and less obvious, while the direction of rolling becomes more and more clear. The elongation of 96.7% alloy is the highest and can reach 54.7%. Through electrochemical analysis, it is found that the greater the deformation of the alloy, the better the corrosion resistance of the alloy sheet. In addition, the effects of different heat treatment temperature and annealing time on the mechanical properties and electrochemical properties of the alloy were also studied. After heat treatment at 210 ℃, the hardness of the alloy increases from 46HV to 73HV, and the hardness increasing trend is more obvious under heat treatment at 150—180 ℃. High temperature heat treatment is conducive to improve the tensile strength of the alloy. With heat treatment at 240 ℃ for 2 h, the tensile strength and elongation increase 29% and 20% respectively.
Key words:  zinc-copper-titanium alloy    mechanical property    heat treatment    microstructure    electrochemical performance
发布日期:  2022-12-09
ZTFLH:  TU512.2  
基金资助: 国家自然科学基金(51504111;51564029);中国博士后科学基金(2018M623418);云南省科技创新人才工程项目(2019HB111)
通讯作者:  *bumchen@kust.edu.cn   
作者简介:  徐英卓,2018年毕业于辽宁科技学院,获工学学士学位。现为昆明理工大学冶金与能源工程学院硕士研究生,在陈步明教授的指导下进行研究。目前主要研究领域为有色金属材料。
陈步明,昆明理工大学冶金与能源工程学院教授、硕士研究生导师。2001年6月本科毕业于武汉理工大学化工系精细化工专业,2009年6月在昆明理工大学冶金系获得有色金属冶金专业工学博士学位。主要从事湿法冶金电极新材料、有色金属特种功能粉体材料、表面工程技术的研究。从2009年至今,主持国家自然科学基金2项、云南省应用基础研究基金1项。作为主要成员参加了国家自然科学基金、教育部全国百篇优秀博士学位论文专项基金、教育部新世纪优秀人才支持计划项目、国家科技部中小企业创新基金及云南省科技攻关计划等8项。获国家授权发明专利4项,实用新型专利1项。共发表论文60余篇,包括Corrosion Science、HydrometallurgyJournal of Alloys & Compounds等。
引用本文:    
徐英卓, 王秀凯, 常麟晖, 陈步明, 黄惠, 何亚鹏, 郭忠诚. 热处理对大变形量Zn-1.65Cu-0.15Ti合金的组织和性能的影响[J]. 材料导报, 2022, 36(23): 21030294-7.
XU Yingzhuo, WANG Xiukai, CHANG Linhui, CHEN Buming, HUANG Hui, HE Yapeng, GUO Zhongcheng. Effect of Heat Treatment on Microstructure and Properties of Zn-1.65Cu-0.15Ti with Large Deformation. Materials Reports, 2022, 36(23): 21030294-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030294  或          http://www.mater-rep.com/CN/Y2022/V36/I23/21030294
1 Sevik H. Materials Characterization, 2014, 89(3), 81.
2 Chen H, Yang D, Tian M J, et al. Special Cast Nonferrous Alloys, 2015,35(6),4(in Chinese).
陈行, 杨灯, 田明杰, 等. 特种铸造及有色合金, 2015, 35(6),4.
3 Bobic B, Bajat J, Acimovic-Pavlovic Z, et al. Corrosion Science, 2011, 53(1),409.
4 Qiao Y Y, Song K X, Zhang Y M, et al. Journal of Henan University of Science & Technology (Natural Science), 2015(1), 5(in Chinese).
乔艳艳, 宋克兴,等. 河南科技大学学报, 2015(1), 5.
5 Sun L C, Tian R Z. Materials Science and Technology, 1990, 9(1), 21(in Chinese).
孙连超, 田荣璋. 材料科学与工艺, 1990, 9(1), 21.
6 Lu W, Yan B. Shanghai Nonferrous Metals, 2004, 25(1), 5(in Chinese).
陆伟, 严彪. 上海有色金属, 2004, 25(1), 5.
7 Narozny M, Zakowski K, Darowicki K. Corrosion Science, 2015, 98, 605.
8 Ferguson J B, Schultz B F, Rohatgi P K. Materials Science & Engineering A, 2015, 620, 85.
9 Santos P F, Niinomi M, Cho K. Acta Biomaterialia, 2015, 26,366.
10 Ji S Y. Study on deformation mechanism and corrosion resistance of Zn-1.5Cu-0.05Ti alloy during hot rolling with large deformation. Ph.D, Thesis, Xi'an University of Technology, China, 2017(in Chinese).
冀盛亚. Zn-1.5Cu-0.05Ti合金大变形量热轧变形机制及其耐腐蚀性能研究. 博士学位论文,西安理工大学, 2017.
11 Wei H G, Li W .Shanghai Nonferrous Metals, 2015, 36(1),1(in Chinese).
魏华光, 李伟文. 有色金属材料与工程, 2015, 36(1),1.
12 Tan B. Metallurgical Series, 1999(2), 37(in Chinese).
谭兵. 冶金丛刊, 1999(2), 37.
13 Geng Z J.Element alloying and heat treatment effect on alloys SCC beha-viors and creep mechanism. Ph.D, Thesis, Central South University, China, 2012(in Chinese).
耿占吉. 合金化与热处理对锌铜钛合金应力腐蚀性能和蠕变性能的影响研究.博士学位论文,中南大学, 2012.
14 Kleber C, Schreiner M. Corrosion Science, 2003, 45,2851.
15 Liang S X, Ma M Z, Jing R, et al. Materials Science & Engineering A, 2012, 539(2),42.
16 Savaskan T, Hekimoqlu A P, Purcek G. Tribology International, 2004, 37(1),45.
17 El -Khair M T A, Daoud A, Ismail A. Materials Letters, 2004, 58(11), 1754.
18 Ding X M. Research on the preparation and processing technology and properties of Zn-Cu-Ti alloy sheet. Ph.D, Thesis, Shanghai Jiao Tong University, China, 2017(in Chinese).
丁学明. 锌铜钛合金板材制备加工工艺及性能研究.博士学位论文,上海交通大学, 2017.
19 El-Sayed A R, Mohran H S, El-Lateef H M A. Journal of Power Sources, 2010, 195,6924.
20 Tan Y, Lin X F, Zhang S D. Science and Engineering of Nonferrous Metals, 2015, 32 (6),61(in Chinese).
谭颖, 林向飞, 张世道. 有色金属科学与工程, 2015, 32 (6),61.
21 Zhang X M. Creep behavior, microstructure and properties of deformed Zn-copper-titanium alloy. Ph.D, Thesis, Central South University, China, 2010(in Chinese).
张喜民. 变形锌铜钛合金蠕变行为及其组织与性能研究. 博士学位论文,中南大学, 2010.
22 Ikeda M, Ueda M, Imaizumi K. Key Engineering Materials, 2013, 551,217.
23 Yu L N, Huang W Q. Foundry Technology, 2015(8),1914(in Chinese).
于丽娜, 黄伟青. 铸造技术, 2015(8),1914.
24 Boczkal G. Archives of Metallurgy & Materials, 2013, 58(4),1019.
25 Wang H, Wang S, Lai F. Thin Solid Films, 2020, 709,138126.
26 Spittle J A. Metallography, 1972, 5,423.
27 Deng M, Jia S G, Song K X, et al. Trans Mater Heat Treat, 2014, 35(8),31(in Chinese).
邓猛, 贾淑果, 宋克兴,等. 材料热处理学报, 2014, 35(8),31.
28 Xiao X, Lin Z H. Hot Working Technology, 2008, 37(6),44(in Chinese).
肖弦, 林章辉. 热加工工艺, 2008, 37(6),44.
29 Miettinen J. Calphad, 2008, 32(2),389.
30 Wang X J, Jiang Y, He S R, et al. Special Cast Nonferrous Alloys, 2013,33(6),555(in Chinese).
汪兴娟, 江宇, 何顺荣,等. 特种铸造及有色合金, 2013, 33(6),555.
[1] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[2] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[3] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[4] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[5] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[6] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[7] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[8] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[9] 史天宇, 孔维雄, 陈雨琳, 宁保群, 董治中. 新型高氮马氏体耐热铸钢的热处理及相变解析[J]. 材料导报, 2022, 36(Z1): 20120084-6.
[10] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[11] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[12] 刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
[13] 刘川北, 高建明, 孟礼元, 刘来宝, 张礼华, 张红平, 罗旭. 聚合物和纤维对石膏基材料早期水化与浆体微结构的影响[J]. 材料导报, 2022, 36(8): 20090176-7.
[14] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[15] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed