Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21080045-5    https://doi.org/10.11896/cldb.21080045
  金属与金属基复合材料 |
系统弹性对载流摩擦副无电条件下摩擦磨损性能的影响
史雪飞1,2, 杨正海1,2,*, 张永振1,2
1 河南科技大学材料科学与工程学院,河南 洛阳 471023
2 河南科技大学高端轴承摩擦学技术与应用国家地方联合工程实验室,河南 洛阳 471023
Effect of System Elasticity on Friction and Wear Performance of Current-carrying Friction Pairs Without Electricity
SHI Xuefei1,2, YANG Zhenghai1,2,*, ZHANG Yongzhen1,2
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
2 National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471023, Henan, China
下载:  全 文 ( PDF ) ( 16790KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电连接器被广泛应用于电力电子、自动控制、航空航天、军事装备等领域。针对系统特性对电连接器的弹性接触对性能影响不明的问题,在微-滑动载流摩擦试验机上,采用往复丝-板摩擦副,研究冷插拔条件下系统弹性对接触对摩擦磨损性能的影响。结果表明:当丝径分别为0.4 mm、0.6 mm、1 mm时,随着系统弹性的增大,试样的平均摩擦系数先增大后减小,在跨距30 mm时存在最大值,分别为0.940 1、0.858 1、0.763 0,板试样磨损量、丝试样磨损量以及总磨损量均呈增大趋势,且存在合理的丝径使得磨损量最小;无电条件下丝-板往复滑动摩擦磨损的主要形式有粘着-犁沟和塑性变形。往复滑动过程中磨损表面存在氧化现象,在粘着力的作用下,摩擦副间的材料发生转移,大量磨屑在磨痕头部发生堆积,使得丝试样往复行程越来越短,且系统弹性的增大使磨损的不均匀性增强,丝试样跃动现象加剧,板试样上磨痕的宽度显著增加。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
史雪飞
杨正海
张永振
关键词:  电连接  系统弹性  摩擦磨损性能  粘着-犁沟    
Abstract: Electrical connectors are widely used in power electronics, automatic control, aerospace, military equipment and other fields. To address the unknown problem of influence of system characteristics on the elastic contact pairs performance of electrical connectors, the reciprocating wire-plate friction pair was used to study the influence of system elasticity on the friction and wear performance of contact pairs under cold plugging conditions on a micro-sliding current-carrying friction tester. The results show that the average friction coefficient increases and then decreases with the increase of the system elasticity for the filament diameter of 0.4 mm, 0.6 mm and 1 mm, respectively. The maximum values are 0.940 1, 0.858 1 and 0.763 0 at the span of 30 mm, respectively. The wear of the plate, wire samples and total are all increasing, and there is a reasonable wire diameter to minimize the wear. The main forms of reciprocating friction and wear of wire-plate sliding are adhesion-furrow and plastic deformation. During the reciprocating sliding process, the wear surface oxidizes and the material between the friction pairs is transferred under the action of adhesion. A large amount of abrasive debris accumulation occurs at the ends of the wear marks, which makes the reciprocating stroke of wire samples shorter and shorter. The increase of the system elasticity leads to an increase in wear inhomogeneity, an increase in the skipping phenomenon of wire samples, and a significant increase in the width of the abrasion marks in plate samples.
Key words:  electrical connection    system elasticity    friction and wear performance    adhesion-furrow
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  TH117.1  
基金资助: 国家自然科学基金(U1804252;U1730130);河南省高等学校重点科研项目(22A430021)
通讯作者:  *杨正海,河南科技大学副教授、硕士研究生导师。于2000年6月获得洛阳工学院学士学位,2005年6月获得吉林大学硕士学位,2015年7月获得机械科学研究总院工学博士学位。主要研究方向为材料摩擦学、塑性加工。发表论文30余篇,其中SCI、EI收录10余篇,参与编写专著、教材三部。近年来主持并参与了国家自然科学基金项目(U1730130)等省部级以上项目10余项。yzh772029@haust.edu.cn   
作者简介:  史雪飞,2020年7月毕业于河南科技大学,获得工学学士学位。现为河南科技大学材料科学与工程学院硕士研究生,在杨正海副教授的指导下进行研究。目前主要研究领域为插拔件的载流摩擦磨损性能及机理。
引用本文:    
史雪飞, 杨正海, 张永振. 系统弹性对载流摩擦副无电条件下摩擦磨损性能的影响[J]. 材料导报, 2023, 37(5): 21080045-5.
SHI Xuefei, YANG Zhenghai, ZHANG Yongzhen. Effect of System Elasticity on Friction and Wear Performance of Current-carrying Friction Pairs Without Electricity. Materials Reports, 2023, 37(5): 21080045-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080045  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21080045
1 Wang T, Yu D Z, Wang S H, et al. Equipment Environmental Engineering, 2021, 18(2), 37 (in Chinese).
王腾, 郁大照, 王泗环, 等. 装备环境工程, 2021, 18(2), 37.
2 Ren W B, Du Y W, Cui L, et al. Wear, 2014, 321, 70.
3 Wang L, Ma F, Ai H, et al. Electromechanical Components, 2022, 42(5), 56(in Chinese).
王璐, 马飞, 艾蘅, 等. 机电元件, 2022, 42(5), 56.
4 Yang F W, Fang D H. Electromechanical Components, 2015, 35(6), 50 (in Chinese).
杨奋为, 房大慧. 机电元件, 2015, 35(6), 50.
5 Yang F W. Electromechanical Components, 2007(3), 42 (in Chinese).
杨奋为. 机电元件, 2007(3), 42.
6 Yang Z J, Bai Y D, Chen X, et al. Scientia Sinica(Physica, Mechanica & Astronomica), 2015, 45(7), 92 (in Chinese).
杨志军, 白有盾, 陈新, 等. 中国科学(物理学·力学·天文学), 2015, 45(7), 92.
7 Zhang T, Yu D Z. Ship Electronic Engineering, 2021, 41(5), 159 (in Chinese).
张彤, 郁大照. 舰船电子工程, 2021, 41(5), 159.
8 Bhattacharyya S, Choudhury A, Jariwala H R, et al. International Journal of Engineering Technology Science, 2011, 2(4), 275.
9 Liu X L, Cai Z B, Liu S B, et al. Journal of Materials Engineering and Performance, 2019, 28(2), 817.
10 Zhou X, Luo B, Kang X, et al. Materials Science and Engineering of Powder Metallurgy, 2020, 25(5), 369 (in Chinese).
周雄, 罗博, 康潇, 等. 粉末冶金材料科学与工程, 2020, 25(5), 369.
11 Ding T, Chen G X, Li Y M. Lubrication Engineering, 2013, 38(2), 39 (in Chinese).
丁涛, 陈光雄, 李玉梅. 润滑与密封, 2013, 38(2), 39.
12 Li Y C, Wang Z Y, Guo F Y, et al. Journal of Liaoning Technical University(Natural Science), 2021, 40(3), 265 (in Chinese).
李俣辰, 王智勇, 郭凤仪, 等. 辽宁工程技术大学学报(自然科学版), 2021, 40(3), 265.
13 Hui Y, Liu G M, Yan T, et al. Materials Reports A:Review Papers, 2019, 33(7), 2272 (in Chinese).
惠阳, 刘贵民, 闫涛, 等. 材料导报:综述篇, 2019, 33(7), 2272.
14 Guo Z J, Zhong J Y, Dai C J. Aviation Precision Manufacturing Technology, 2018, 54(5), 60 (in Chinese).
郭治军, 钟江英, 戴长军. 航空精密制造技术, 2018, 54(5), 60.
15 Zhang Q, Li C Y, Li C L, et al. Functional Materials, 2023, 54(1), 1133(in Chinese).
张强, 李春燕, 李春玲, 等. 功能材料, 2023, 54(1), 1133.
16 Yang Z H, Shangguan B, Sun L M, et al. Journal of Henan University of Science and Technology (Natural Science), 2021, 42(1), 1 (in Chinese).
杨正海, 上官宝, 孙乐民, 等. 河南科技大学学报(自然科学版), 2021, 42(1), 1.
17 Huang M J, Li B, Dong X P, et al. Tribology, 2021, 41(2), 206 (in Chinese).
黄明吉, 李斌, 董秀萍, 等. 摩擦学学报, 2021, 41(2), 206.
18 Wen S Z, Huang P. Principles of tribology, Tsinghua University Press, China, 2018 (in Chinese).
温诗铸, 黄平. 摩擦学原理, 清华大学出版社, 2018.
19 Sun G A, Yang Z H, Ni F, et al. Lubrication Engineering, 2021, 46(8), 49 (in Chinese).
孙高昂, 杨正海, 倪锋, 等. 润滑与密封, 2021, 46(8), 49.
20 Yang Z H, Zhang Y Z, Zhao F, et al. Tribology International, 2016, 94, 71.
21 Qian G, Feng Y, Zhang J C, et al. Science and Engineering of Composite Materials, 2018, 25(2), 343.
22 Lu D W, Qian G, Feng Y, et al. Lubrication Engineering, 2021, 46(1), 51 (in Chinese).
陆大伟, 钱刚, 凤仪, 等. 润滑与密封, 2021, 46(1), 51.
[1] 王蕊, 王林山, 石韬, 周超, 汪礼敏. 谐波减速器用粉末冶金刚轮材料的摩擦磨损性能研究[J]. 材料导报, 2022, 36(13): 20120260-7.
[2] 张莲芝, 吴张永, 王庭有, 朱启晨, 蔡晓明, 莫子勇. 纳米氧化锆多层吸附的模拟及实验研究[J]. 材料导报, 2021, 35(18): 18040-18046.
[3] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[4] 张硕, 徐梓真, 张冰, 宋国林, 韩彬, 唐国翌. 高能电脉冲-超声滚压耦合技术对淬火态GCr15钢表面强化研究*[J]. 《材料导报》期刊社, 2017, 31(2): 82-86.
[5] 米翔, 龚俊, 曹文翰, 王宏刚, 任俊芳. 纳米SiC与PI填充改性PTFE复合材料的摩擦磨损性能*[J]. 《材料导报》期刊社, 2017, 31(18): 102-108.
[6] 刘伯威, 徐菲, 刘咏, 杨阳, 唐兵. 钛酸钾含量对汽车摩擦材料性能的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 45-51.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed