Effect of System Elasticity on Friction and Wear Performance of Current-carrying Friction Pairs Without Electricity
SHI Xuefei1,2, YANG Zhenghai1,2,*, ZHANG Yongzhen1,2
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China 2 National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471023, Henan, China
Abstract: Electrical connectors are widely used in power electronics, automatic control, aerospace, military equipment and other fields. To address the unknown problem of influence of system characteristics on the elastic contact pairs performance of electrical connectors, the reciprocating wire-plate friction pair was used to study the influence of system elasticity on the friction and wear performance of contact pairs under cold plugging conditions on a micro-sliding current-carrying friction tester. The results show that the average friction coefficient increases and then decreases with the increase of the system elasticity for the filament diameter of 0.4 mm, 0.6 mm and 1 mm, respectively. The maximum values are 0.940 1, 0.858 1 and 0.763 0 at the span of 30 mm, respectively. The wear of the plate, wire samples and total are all increasing, and there is a reasonable wire diameter to minimize the wear. The main forms of reciprocating friction and wear of wire-plate sliding are adhesion-furrow and plastic deformation. During the reciprocating sliding process, the wear surface oxidizes and the material between the friction pairs is transferred under the action of adhesion. A large amount of abrasive debris accumulation occurs at the ends of the wear marks, which makes the reciprocating stroke of wire samples shorter and shorter. The increase of the system elasticity leads to an increase in wear inhomogeneity, an increase in the skipping phenomenon of wire samples, and a significant increase in the width of the abrasion marks in plate samples.
史雪飞, 杨正海, 张永振. 系统弹性对载流摩擦副无电条件下摩擦磨损性能的影响[J]. 材料导报, 2023, 37(5): 21080045-5.
SHI Xuefei, YANG Zhenghai, ZHANG Yongzhen. Effect of System Elasticity on Friction and Wear Performance of Current-carrying Friction Pairs Without Electricity. Materials Reports, 2023, 37(5): 21080045-5.
1 Wang T, Yu D Z, Wang S H, et al. Equipment Environmental Engineering, 2021, 18(2), 37 (in Chinese). 王腾, 郁大照, 王泗环, 等. 装备环境工程, 2021, 18(2), 37. 2 Ren W B, Du Y W, Cui L, et al. Wear, 2014, 321, 70. 3 Wang L, Ma F, Ai H, et al. Electromechanical Components, 2022, 42(5), 56(in Chinese). 王璐, 马飞, 艾蘅, 等. 机电元件, 2022, 42(5), 56. 4 Yang F W, Fang D H. Electromechanical Components, 2015, 35(6), 50 (in Chinese). 杨奋为, 房大慧. 机电元件, 2015, 35(6), 50. 5 Yang F W. Electromechanical Components, 2007(3), 42 (in Chinese). 杨奋为. 机电元件, 2007(3), 42. 6 Yang Z J, Bai Y D, Chen X, et al. Scientia Sinica(Physica, Mechanica & Astronomica), 2015, 45(7), 92 (in Chinese). 杨志军, 白有盾, 陈新, 等. 中国科学(物理学·力学·天文学), 2015, 45(7), 92. 7 Zhang T, Yu D Z. Ship Electronic Engineering, 2021, 41(5), 159 (in Chinese). 张彤, 郁大照. 舰船电子工程, 2021, 41(5), 159. 8 Bhattacharyya S, Choudhury A, Jariwala H R, et al. International Journal of Engineering Technology Science, 2011, 2(4), 275. 9 Liu X L, Cai Z B, Liu S B, et al. Journal of Materials Engineering and Performance, 2019, 28(2), 817. 10 Zhou X, Luo B, Kang X, et al. Materials Science and Engineering of Powder Metallurgy, 2020, 25(5), 369 (in Chinese). 周雄, 罗博, 康潇, 等. 粉末冶金材料科学与工程, 2020, 25(5), 369. 11 Ding T, Chen G X, Li Y M. Lubrication Engineering, 2013, 38(2), 39 (in Chinese). 丁涛, 陈光雄, 李玉梅. 润滑与密封, 2013, 38(2), 39. 12 Li Y C, Wang Z Y, Guo F Y, et al. Journal of Liaoning Technical University(Natural Science), 2021, 40(3), 265 (in Chinese). 李俣辰, 王智勇, 郭凤仪, 等. 辽宁工程技术大学学报(自然科学版), 2021, 40(3), 265. 13 Hui Y, Liu G M, Yan T, et al. Materials Reports A:Review Papers, 2019, 33(7), 2272 (in Chinese). 惠阳, 刘贵民, 闫涛, 等. 材料导报:综述篇, 2019, 33(7), 2272. 14 Guo Z J, Zhong J Y, Dai C J. Aviation Precision Manufacturing Technology, 2018, 54(5), 60 (in Chinese). 郭治军, 钟江英, 戴长军. 航空精密制造技术, 2018, 54(5), 60. 15 Zhang Q, Li C Y, Li C L, et al. Functional Materials, 2023, 54(1), 1133(in Chinese). 张强, 李春燕, 李春玲, 等. 功能材料, 2023, 54(1), 1133. 16 Yang Z H, Shangguan B, Sun L M, et al. Journal of Henan University of Science and Technology (Natural Science), 2021, 42(1), 1 (in Chinese). 杨正海, 上官宝, 孙乐民, 等. 河南科技大学学报(自然科学版), 2021, 42(1), 1. 17 Huang M J, Li B, Dong X P, et al. Tribology, 2021, 41(2), 206 (in Chinese). 黄明吉, 李斌, 董秀萍, 等. 摩擦学学报, 2021, 41(2), 206. 18 Wen S Z, Huang P. Principles of tribology, Tsinghua University Press, China, 2018 (in Chinese). 温诗铸, 黄平. 摩擦学原理, 清华大学出版社, 2018. 19 Sun G A, Yang Z H, Ni F, et al. Lubrication Engineering, 2021, 46(8), 49 (in Chinese). 孙高昂, 杨正海, 倪锋, 等. 润滑与密封, 2021, 46(8), 49. 20 Yang Z H, Zhang Y Z, Zhao F, et al. Tribology International, 2016, 94, 71. 21 Qian G, Feng Y, Zhang J C, et al. Science and Engineering of Composite Materials, 2018, 25(2), 343. 22 Lu D W, Qian G, Feng Y, et al. Lubrication Engineering, 2021, 46(1), 51 (in Chinese). 陆大伟, 钱刚, 凤仪, 等. 润滑与密封, 2021, 46(1), 51.