Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21070056-9    https://doi.org/10.11896/cldb.21070056
  无机非金属及其复合材料 |
持续荷载作用下砂浆裂缝的自修复性能及其评价指标
李双捷, 马昆林*, 龙广成, 谢友均, 曾晓辉
中南大学土木工程学院,长沙 410075
Self-Healing Performance of Mortar Crack Under Different Sustained Load and Its Evaluation Index
LI Shuangjie, MA Kunlin*, LONG Guangcheng, XIE Youjun, ZENG Xiaohui
School of Civil Engineering, Central South University, Changsha 410075, China
下载:  全 文 ( PDF ) ( 41650KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以高吸水树脂为自修复剂,以表面裂缝愈合率(γ)和强度恢复率(η)为砂浆裂缝自修复性能的评价指标,对比研究了预裂龄期为7 d和28 d时,不同持续荷载作用对砂浆裂缝自修复性能的影响。结果表明:相较预裂龄期为28 d的砂浆组,预裂龄期为7 d的砂浆组自修复效果较好;持续压荷载下,砂浆裂缝的自修复效果较好,其η比不受荷载作用的试件分别增大3.2%(7 d预裂龄期)和9.3%(28 d预裂龄期);持续弯曲荷载和持续扭荷载作用不利于砂浆的自修复,其中持续弯曲荷载的不利影响较为显著,持续弯曲荷载作用下,其η比不受荷载作用的试件分别低 43.5%(7 d预裂龄期)和 47.3%(28 d预裂龄期)。微观测试表明,砂浆裂缝中的自修复产物主要是碳酸钙,且主要集中在裂缝开口位置附近,因此采用γ作为自修复评价指标有可能高估自修复效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李双捷
马昆林
龙广成
谢友均
曾晓辉
关键词:  砂浆  裂缝  自修复性能  表面裂缝愈合率  强度恢复率  持续荷载    
Abstract: In this work, the influence of different sustained loads on self-healing effectiveness of the mortar crack with the pre-cracking ages 7 d and 8 d were investigated by adding super absorbent polymer (SAP) into the mortar, prefabricating cracks on the mortar and taking the indexes of surface crack healing rate (γ) and strength recovery rate (η) to evaluate the self-healing effects of the mortar cracks. Results show that the self-healing effectiveness of the mortar crack with pre-cracking 7 d age are better than that of the mortar with pre-cracking 28 d age. Sustained compressive load is beneficial to the self-healing of mortar crack. The η of specimen with sustained compressive load is 3.2% (pre-cracked at 7 d) and 9.3% (pre-cracked at 28 d) higher than that of specimen without load, respectively. However, sustained flexural load and torque load take disadvantage of the self-healing of mortar crack. The η of specimen with sustained flexural load is 43.5% (pre-cracked at 7 d) and 47.3% (pre-cracked at 28 d) lower than that of the specimens without load. Microscopic tests show that the self-healing products in mortar cracks are mainly calcium carbonate, which mainly exists near the crack surface. Therefore, it is possible to overestimate the self-healing effectiveness by taking γ as a evaluation index.
Key words:  cement mortar    crack    self-healing effectiveness    closure rate of surface crack    recovery rate of strength    sustained load
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  TU528  
基金资助: 国家重点研发计划项目(2017YFB201204)
通讯作者:  *马昆林,中南大学土木工程学院教授。1999年于中南大学建筑工程专业取得学士学位,2005年于中南大学土木工程专业取得研究生学位,2009年于中南大学道路与铁道工程专业取得博士学位。主要从事智能道路、海绵城市、路面结构设计及损伤理论、固废资源化利用、高性能混凝土技术及高速铁路无砟轨道方面的研究和工程应用。发表学术论文100余篇,获专利授权10项,主编教材3部,出版专著1部,作为主要起草人编制规范4部。makunlin@csu.edu.cn   
作者简介:  李双捷,2017年6月毕业于黑龙江科技大学,获得工学学士学位。现为中南大学土木工程学院硕士研究生,在马昆林教授的指导下进行研究。目前主要研究领域为水泥基自修复材料。
引用本文:    
李双捷, 马昆林, 龙广成, 谢友均, 曾晓辉. 持续荷载作用下砂浆裂缝的自修复性能及其评价指标[J]. 材料导报, 2023, 37(5): 21070056-9.
LI Shuangjie, MA Kunlin, LONG Guangcheng, XIE Youjun, ZENG Xiaohui. Self-Healing Performance of Mortar Crack Under Different Sustained Load and Its Evaluation Index. Materials Reports, 2023, 37(5): 21070056-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070056  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21070056
1 Li W T, Dong B Q, Yang Z X, et al. Advanced Materials, 2018, 30(17), 1705679.
2 Huang H L, Ye G, Qian C X, et al. Materials and Design, 2016, 92, 499.
3 Reinhard H, Jooss M. Cement and Concrete Research, 2003,33(7),981.
4 Zhang P, Dai Y Q, Gao K K, et al. Journal of the Chinese Ceramic Society, 2019, 47(11), 1527(in Chinese).
张鹏, 戴雨晴, 高凯凯等.硅酸盐学报, 2019, 47(11), 1527.
5 Jiang Z W, Li W T, Yuan Z C, et al. Cement and Concrete Composites, 2015, 57, 116.
6 Özbay E, Sahmaran M, Yucel H, et al. Journal of Advanced Concrete Technology, 2013, 11, 167.
7 Yildirim G, Alyousif A. Advances in Cement Research, 2015, 27(10), 581.
8 Edvardsen C. ACI Materials Journal, 1999, 96(4), 448.
9 Snoeck D, Van K K, Steuperaert S, et al. Journal of Intelligent Materials Systems and Structures, 2014, 25(1), 13.
10 Lee H X D, Wong H S, Buenfled N R. Advances in Applied Ceramics, 2010, 109(5), 29.
11 Snoeck D, Dewanckele J, Cnudde V, et al. Cement and Concrete Composites, 2016, 65, 83.
12 Gagne R, Argouges M. Materials and Structures, 2012, 45(11), 1625.
13 Liu S R, Yang J J, Wang Z Z, et al. Journal of the Chinese Ceramic Society, 2015, 43(8), 1083(in Chinese).
刘素瑞, 杨久俊, 王战忠, 等. 硅酸盐学报, 2015, 43(8), 1083.
14 Huges B P, Ash J E. Materials and Structures,1970,3(2), 81.
15 Snoeck D, De B D. Journal of Materials in Civil Engineering, 2016, 28(1), 04015086.
16 Sisomphon K, Copuroglu O, Koendre E A B. Cement and Concrete Composites, 2012, 34, 566.
[1] 常洪雷, 李晨聪, 王晓龙, 王剑宏, 王云飞, 曲明月, 刘健. 复合矿物掺合料对砂浆自修复性能的影响[J]. 材料导报, 2023, 37(2): 21070177-7.
[2] 高瑞晓, 王剑云. 微生物矿化沉积碳酸钙技术修复混凝土既有微裂缝研究进展[J]. 材料导报, 2023, 37(1): 21120210-10.
[3] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[4] 王子仪, 张武龙, 王瑞燕, 邓伟新, 吴沂. 石蜡热工介质对混凝土绝热温升的影响[J]. 材料导报, 2022, 36(Z1): 21080274-5.
[5] 黄雨辰, 张永明. 乳液复配对瓷砖粘结体系中聚合物水泥防水涂膜的影响[J]. 材料导报, 2022, 36(Z1): 22010015-6.
[6] 李京军, 谭德林, 牛建刚. 砂浆流变参数的Marsh筒法和微坍法测定[J]. 材料导报, 2022, 36(9): 21010230-7.
[7] 杨荣周, 陈佩圆, 葛进进, 徐颖, 王佳, 刘家兴, 谢昊天. 增幅循环荷载下CFRP约束型橡胶砂浆的疲劳特征[J]. 材料导报, 2022, 36(9): 21040223-10.
[8] 刘娟红, 孟翔, 段品佳, 马焜. 基于MATLAB的混凝土裂缝宽度计算方法研究[J]. 材料导报, 2022, 36(6): 21010082-6.
[9] 王威娜, 周圣雄, 秦煜. 室内反射裂缝试验方法研究进展[J]. 材料导报, 2022, 36(5): 20090234-10.
[10] 杨利香, 宋兴福, 陆美荣, 夏月辉. 基于再生粗骨料裹浆厚度的含砂透水混凝土配合比设计方法[J]. 材料导报, 2022, 36(4): 21020037-7.
[11] 田青, 屈孟娇, 祁帅, 姚田帅, 张苗, 许鸽龙, 邓德华. 低强型水泥乳化沥青砂浆抗压强度的计算模型[J]. 材料导报, 2022, 36(22): 21040170-5.
[12] 冯春花, 黄益宏, 崔卜文, 朱建平, 李东旭, 郭晖. 建筑再生骨料强化方法研究进展[J]. 材料导报, 2022, 36(21): 20080099-8.
[13] 邓明科, 王雪松, 张敏, 马福栋, 罗妍, 孙宏哲. 钢筋高延性混凝土梁裂缝试验研究与计算方法[J]. 材料导报, 2022, 36(2): 20120239-9.
[14] 赵晓雯, 张检梅, 陈徐东, 季韬. 生石灰-碳酸钠掺量和矿渣活性对碱矿渣砂浆抗裂性能的影响[J]. 材料导报, 2022, 36(16): 21030241-5.
[15] 张苗, 田青, 屈孟娇, 祁帅, 姚田帅, 许鸽龙, 邓德华. 水泥乳化沥青砂浆应力-应变本构关系的研究[J]. 材料导报, 2022, 36(15): 21010104-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed