Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 21120210-10    https://doi.org/10.11896/cldb.21120210
  无机非金属及其复合材料 |
微生物矿化沉积碳酸钙技术修复混凝土既有微裂缝研究进展
高瑞晓, 王剑云*
西安交通大学人居环境与建筑工程学院,西安 710049
Research Progress of Microbial Mineralization and Deposition of Calcium Carbonate Technology for Repairing Existing Micro-cracks in Concrete:a Review
GAO Ruixiao, WANG Jianyun*
School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China
下载:  全 文 ( PDF ) ( 3490KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土由于具有容易成型、价格低廉、抗压强度高等特点而被广泛应用。但由于混凝土具有各向异性特性,其在服役期间往往不可避免出现裂缝,导致混凝土结构出现渗水,严重时导致结构失效。为延长既有混凝土在实际工程应用中的服役寿命,近年来,研究人员探索利用一种微生物诱导碳酸钙沉积(Microbial-induced carbonate precipitation, MICP)技术进行既有混凝土微裂缝的修复。该技术绿色环保,生物碳酸钙与混凝土基体相容性好,而且修复液粘性低,易进入裂缝空间,修复物质在裂缝内分布更均匀,成为当下的研究热点。MICP技术在混凝土中的应用与碳酸钙矿化沉积机制和修复工艺存在密切关系。本文拟从微生物矿化诱导碳酸钙沉积机制、修复工艺两个方面总结微生物矿化沉积碳酸钙技术在混凝土既有微裂缝修复的研究进展。微生物矿化机制中脲酶催化作用沉积碳酸钙机制由于时间短、碳酸钙产量高,在许多领域中被广泛研究,但是副产物氨不容忽视,对此提出多种矿化机制相结合的方法。修复剂各组分的添加建议采取一步法或两步法中的“细菌、尿素+钙源”组合。而添加工艺方面,相比于浸泡法和喷洒法,注射法对混凝土既有裂缝修复适用性更强,在使用注射法时建议添加滞留剂或保湿剂延长修复剂在裂缝内的滞留时间。本文为进一步推动MICP技术在混凝土既有微裂缝修复中的实际应用进程提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高瑞晓
王剑云
关键词:  MICP  混凝土微裂缝  修复工艺  填充率  滞留时间    
Abstract: Concrete is the most widely used construction material because of its easy-cast, low price and high compressive strength. However, due to its intrinsic heterogeneity and non-ideal working environment, concrete could not tolerate too much tension forces and hence is prone to crack during service, which is the start of concrete deterioration (such as water seepage) and concrete failure. In order to prolong the service life of existing concrete structures, global researchers have acquired positive progress in recent years in exploratively utilizing a new technology to repair micro-cracks in existing concrete, i.e. microbial-induced carbonate precipitation (MICP) technology. This technology is environmentally friendly and compatible with concrete matrix. The repairing agents used are of low viscosity and hence easy to penetrate into the deep part of the crack, which can result in a homogeneous healing inside crack space.The repairing efficiency is closely related to the bio-CaCO3 deposition mechanism and repair procedure. This review intends to summarize the research progress of MICP technology in the repair of existing concrete micro-cracks from the aspects of microbial-induced calcium carbonate deposition mechanism and repair procedure, both of which are of great significance in that applicative research topic. The biogenic CaCO3 precipitation based on bacterial urease catalyzed urea hydrolysis is one of the mostly studied processes owing to its high CaCO3 production and ease of control. But that process has an unignorable flaw-generation of ammonia as a by-pro-duct. So we suggest in the paper the combinational use of two or three mineralization mechanisms maybe a solution for that problem. With respect to the repair procedure, either a one-step or a two-step procedure can be used for MICP-based crack repair and the addition of healing components can be realized by the methods of immersion, spraying and injection. Among the three methods, the injection is most applicable in practice, and the use of a retention aid or a moisturizing agent can help to prolong the retention of the repairing agents inside cracks and consequently to obtain effective CaCO3 precipitation. This paper is expected to provide a prospect and reference for further promoting the practical application of MICP technology in the repair of existing micro-cracks in concrete under service.
Key words:  MICP    concrete micro-crack    repair process    filling rate    retention time
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TU528.1  
基金资助: 国家自然科学基金青年基金(51908459);陕西省自然科学基金面上基金(2020JM-040)
通讯作者:  * 王剑云,国家级青年人才,西安交通大学人居学院土木工程系教授、博士研究生导师。博士毕业于比利时根特大学。2013年至2018年在比利时根特大学从事博士后研究。2018年至今任职于西安交通大学土木工程专业。主要从事新型环境友好生物材料在土木工程领域的研究,包括微生物矿化沉积碳酸钙、微生物自修复混凝土、生物可再生混凝土、生物水泥、固废资源化等。发表国际期刊及会议论文60余篇,Google Scholar总引用次数达3 800余次,获美国专利1项和中国发明专利3项。jianyun.wang@xjtu.edu.cn   
作者简介:  高瑞晓,2016年6月、2019年6月分别于山西大学和天津城建大学获得工学学士学位和硕士学位。现为西安交通大学人居环境与建筑工程学院土木工程系博士研究生,主要从事基于微生物矿化沉积碳酸钙的混凝土裂缝修复研究。
引用本文:    
高瑞晓, 王剑云. 微生物矿化沉积碳酸钙技术修复混凝土既有微裂缝研究进展[J]. 材料导报, 2023, 37(1): 21120210-10.
GAO Ruixiao, WANG Jianyun. Research Progress of Microbial Mineralization and Deposition of Calcium Carbonate Technology for Repairing Existing Micro-cracks in Concrete:a Review. Materials Reports, 2023, 37(1): 21120210-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120210  或          http://www.mater-rep.com/CN/Y2023/V37/I1/21120210
1 Suleiman A R, Nehdi M L. Cement and Concrete Research, 2018, 111, 197.
2 Palin D, Wiktor V, Jonkers H M. Cement and Concrete Research, 2015, 73, 17.
3 Yong-Soo L, Jae-Suk R. Materials, 2016, 9(4), 555.
4 DB11/T 637-2009, 房屋结构安全鉴定标准. 北京城建科技促进会, 2009.
5 Gao S, Gao Y G. Sichuan Water Resources, 2019, 49(6), 4(in Chinese).
高山, 高远贵. 四川水利, 2019, 49(6), 4.
6 Chen H, Yang Y K, Song D F. Engineering Construction, 2008, 40(2), 37(in Chinese).
陈辉, 杨彦克, 宋登富. 工程建设, 2008, 40(2), 37.
7 Shi D, Shi C J, Wu Z M, et al. Materials Reports, 2021, 35(7), 7096(in Chinese).
石达, 史才军, 吴泽媚, 等. 材料导报, 2021, 35(7), 7096.
8 Deng Q. China Standardization, 2019, 560(24), 2(in Chinese).
邓强. 中国标准化, 2019, 560(24), 2.
9 Lian J J, Gao M M, Yan Y, et al. South-to-North Water Transfers and Water Science and Technology, 2019, 17(1), 164(in Chinese).
练继建, 高毛毛, 闫玥, 等. 南水北调与水利科技, 2019, 17(1), 164.
10 Belie D N, Muynck D W. In:Proceedings of the 2nd International Conference on Concrete Repair, Rehabilitation, and Retrofitting(ICCRRR). Belgium, 2008, pp. 291.
11 Dhami N K, Reddy S M, Mu kherjee A. Advanced Topics in Biominera-lization, 2012(2), 137.
12 Chruściel J J, Leśniak E. Progress in Polymer Science, 2015, 41, 67.
13 Dong J F, Wang Q Y, Zhu Y M, et al. Journal of Sichuan University(Engineering Science Edition), 2010, 42(5), 197(in Chinese).
董江峰, 王清远, 朱艳梅, 等. 四川大学学报:工程科学版, 2010, 42(5), 197.
14 Deng Z C, Lu Y H, Gong M G, et al. Journal of Tianjin University(Science and Technology), 2022, 55(6), 11(in Chinese).
邓宗才, 鹿宇浩, 龚明高, 等. 天津大学学报:自然科学与工程技术版, 2022, 55(6), 11.
15 Li Y, Liu X, Li J. Journal of Materials in Civil Engineering, 2017, 29(5), 04016275. 1.
16 Lu Y F, Wang C H, Wang X C, et al. Material Reports, 2022, 36(1), 7(in Chinese).
陆由付, 王朝辉, 王学成, 等. 材料导报, 2022, 36(1), 7.
17 Qian C X, Wang A H, Wang X. Rock and Soil Mechanics, 2015, 36(6), 12(in Chinese).
钱春香, 王安辉, 王欣. 岩土力学, 2015, 36(6), 12.
18 SL 62-2014, 水工建筑物水泥灌浆施工技术规范. 中国水利水电出版社, 2014.
19 Yin M M. Structural Engineers, 2021, 37(1), 177(in Chinese).
尹萌萌. 结构工程师, 2021, 37(1), 177.
20 Jia Q, Jiang H, Zhang X. Journal of Building Materials, 2018, 21(4), 663(in Chinese).
贾强, 姜欢, 张鑫. 建筑材料学报, 2018, 21(4), 663.
21 Li Z H, Tian S Z, Ding S S. Building Structure, 2017, 47(15), 5(in Chinese).
李祖辉, 田石柱, 丁双双. 建筑结构, 2017, 47(15), 5.
22 Liu G B, Hu J, Qian W L, et al. Chongqing Architecture, 2017, 16(1), 4(in Chinese).
刘桂宾, 胡俊, 钱文隆, 等. 重庆建筑, 2017, 16(1), 4.
23 Zeng F F, Tan J, Zheng W Z. Low Temperature Architecture Technology, 2007(6), 3(in Chinese).
曾凡峰, 谭军, 郑文忠. 低温建筑技术, 2007(6), 3.
24 Huang W B, Li J, Bo Z W, et al. New Building Materials, 2014, 41(6), 80(in Chinese).
黄微波, 李晶, 伯忠维, 等. 新型建筑材料, 2014, 41(6), 80.
25 Justo-Reinoso I, Reeksting B J J, Hamley-Bennett C, et al. Construction and Building Materials, 2022, 327, 126877.
26 Sun X C, Chen J, Lu S Y, et al. Sustainability, 2021, 13(9), 4834.
27 Jiang L, Jia G H, Jiang C, et al. Construction and Building Materials, 2020, 232, 117222.
28 Wang J Y, Soens H, Verstraete W, et al. Cement and Concrete Research, 2014, 56, 139.
29 Zhu T, Paulo C, Merroun M L, et al. Ecological Engineering, 2015, 82, 459.
30 Kamennaya N, Ajo-Franklin C, Northen T, et al. Minerals, 2012, 2(4), 338.
31 Reddy M S, Joshi S. Carbon dioxide sequestration in cementitious construction materials, Woodhead Publishing, UK, 2018, pp.225.
32 Sun Y. Isolation and screening of urea decomposing bacteria from different regions of china and comparative study on their ability to induce calcium carbonate deposition. Ph.D. Thesis, Lanzhou University, China, 2017(in Chinese).
孙莺. 中国不同地区尿素分解菌的分离筛选及其诱导碳酸钙沉积能力的比较研究. 博士学位论文, 兰州大学, 2017.
33 Sun X, Miao L. Journal of Advanced Concrete Technology, 2020, 18(5), 307.
34 Park S J, Park J M, Kim W J, et al. Journal of Microbiology and Biotechnology, 2012, 22(11), 1568.
35 Xu J, Wang X, Wang B. Applied Microbiology and Biotechnology, 2018, 102(7), 3121.
36 Xu J, Wang X, Yao W. Cement and Concrete Composites, 2019, 104, 103358.
37 Van Tittelboom K, De Belie N, De Muynck W, et al. Cement and Concrete Research, 2010, 40(1), 157.
38 Wang J, Van Tittelboom K, De Belie N, et al. Construction and Building Materials, 2012, 26(1), 532.
39 Jonkers H M. Springer Series in Materials Science, DOI: 10. 1007/978-1-4020-6250-6_9.
40 Zhang X T. Study on the modification of recycled aggregate by microbially mineral precipitation and its mechanism. Master’s Thesis, Qingdao University of Technology, China, 2016(in Chinese).
张晓彤. 微生物矿化沉积改性再生骨料及其机理研究. 硕士学位论文, 青岛理工大学, 2016.
41 Martin D, Dodds K, Butler I B, et al. Environmental Science and Technology, 2013, 47(15), 8692.
42 Sorokin D Y, van Pelt S, Tourova T P. FEMS Microbiology Letters, 2008, 288(2), 235.
43 Wiktor V, Jonkers H M. Case Studies in Construction Materials, 2015, 2, 11.
44 Sangadji S, Wiktor V, Jonkers H, et al. Procedia Engineering, 2017, 171, 606.
45 Erşan Y Ç, Belie N D, Boon N. Biochemical Engineering Journal, 2015, 101, 108.
46 Rodriguez-Navarro C, Jimenez-Lopez C, Rodriguez-Navarro A, et al. Geochimica et Cosmochimica Acta, 2007, 71(5), 1197.
47 Rodriguez-Navarro C, Jroundi F, Schiro M, et al. Applied and Environmental Microbiology, 2012, 78(11), 4017.
48 Van Trappen S, Tan T L, Samyn E, et al. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(Pt 6), 2571.
49 Zhang Y, Chen Q, Ji J, et al. Current Microbiology, 2018, 75(12), 1551.
50 Hammes F, Boon N, de Villiers J, et al. Applied and Environmental Microbiology, 2003, 69(8), 4901.
51 Warthmann R, Lith Y V, Vasconcelos C, et al. Geology, 2000, 28(12), 1091.
52 Bosak T, Newman D K. Geology, 2003, 31(7), 577.
53 Reeburgh W S. Chemical Reviews, 2007, 107(2), 486.
54 Ganendra G, Ganendra G, Ho A, et al. New Biotechnology, 2014, 31, S133.
55 Yang Q Q, He X, Li Q F, et al. Industrial Construction, 2018, 546(7), 43(in Chinese).
杨清清, 何鑫, 李琼芳, 等. 工业建筑, 2018, 546(7), 43.
56 Bozbeyoglu N N, Şensoy Candoǧan T, Arslan S, et al. Pamukkale University Journal of Engineering Sciences, 2020, 26(3), 513.
57 Jonkers H M. Procedia Engineering, 2017, 171, 168.
58 De Belie N, Gruyaert E, Al-Tabbaa A, et al. Advanced Materials Interfaces, 2018, 5(17), 1800074.
59 Wang Z J, Yin J J, Pu J B, et al. Advances in Earth Science, 2019, 34(6), 606(in Chinese).
汪智军, 殷建军, 蒲俊兵, 等. 地球科学进展, 2019, 34(6), 606.
60 Zhu T, Lu X, Dittrich M. Construction and Building Materials, 2017, 146, 43.
61 Zhu T, Lin Y, Lu X, et al. Ecological Engineering, 2018, 120, 154.
62 Wang H M, Wu X P, Qiu X. Microbiology China, 2013(1), 185(in Chinese).
王红梅, 吴晓萍, 邱轩, 等. 微生物学通报, 2013(1), 185.
63 Liu Z H, Li Q, Sun H L, et al. Hydrogeology and Engineering Geology, 2005, 32(6), 10.
64 Seifan M, Samani A K, Berenjian A. Applied Microbiology and Biotechnology, 2016, 100(6), 2591.
65 Al-Thawadi S M. Journal of Advanced Science and Engineering Research, 2011, 1, 98.
66 Yang Z. Research on mechanism and performance of high-strength microbial mortar. Ph.D. Thesis, Tsinghua University, China, 2013(in Chinese).
杨钻. 高强微生物砂浆机理与工作性能研究. 博士学位论文, 清华大学, 2013.
67 Jagannathan P, Narayanan K S, Arunachalam K D, et al. Materials Today Proceedings, 2018, 5(2), 8875.
68 Gupta S, Kua H W, Pang S D. Cement and Concrete Composites, 2018, 86, 238.
69 Wen K, Li Y, Liu S, et al. Geotechnical and Geological Engineering, 2018, 37(2), 1015.
70 Kalantary F, Kahani M. Procedia Earth and Planetary Science, 2015, 15, 278.
71 Verba C, Thurber A R, Alleau Y, et al. International Journal of Greenhouse Gas Control, 2016, 49, 312.
72 Cardoso R, Pires I, Duarte S O D, et al. Applied Clay Science, 2018, 156, 96.
73 Bu C, Wen K, Liu S, et al. Materials and Structures, 2018, 51(1), 30.
74 Li D, Tian K L, Zhang H L, et al. Construction and Building Materials, 2018, 172, 251.
75 Sharaky A M, Mohamed N S, Elmashad M E, et al. Construction and Building Materials, 2018, 190(30), 861.
76 Chithambar G A, Muthukannan M, Malathy R, et al. KSCE Journal of Civil Engineering, 2019, 23(10), 4368.
77 Tajarudin H A, Santiagoo R, Gomesh N, et al. IOP Conference Series: Earth and Environmental Science, 2020, 616(1), 012006.
78 Rauf M, Khaliq W, Khushnood R A, et al. Construction and Building Materials, 2020, 258, 119578.
79 Doctolero J Z S, Beltran A B, Uba M O, et al. Minerals, 2020, 10(12), 1114.
80 Wang J, Jonkers H M, Boon N, et al. Applied Microbiology and Biotechnology, 2017, 101(12), 5101.
81 Sun X H. Study on mechanism of microbial mineralization and application of it to repair concrete cracks. Ph. D. Thesis, Southeast University, China, 2019(in Chinese).
孙潇昊. 微生物矿化机理与混凝土裂缝修复应用研究. 博士学位论文, 东南大学, 2019.
82 Zhao H, Xu S Y, Zhang Y C. Journal of Materials Science and Engineering, 2020, 38(6), 966(in Chinese).
赵涵, 徐苏云, 张雨辰. 材料科学与工程学报, 2020, 38(6), 966.
83 Sun X H, Miao L C, Wu L Y, et al. Advances in Cement Research, 2020, 32(6), 262.
84 Jongvivatsakul P, Janprasit K, Nuaklong P, et al. Construction and Building Materials, 2019, 212, 737.
85 Lors C, Damidot D, Petit L, et al. Construction and Building Materials, 2020, 237, 117618.
86 Chuo S C, Mohamed S F, Mohd Setapar S H, et al. Materials(Basel), 2020, 13(21), 4993.
87 De Muynck W, Belie D N, Verstraete W. Ecological Engineering, 2010, 36(2), 118.
88 Haryati Y, Zango M U, Kassim K A, et al. MATEC Web of Conferences, 2018, 250, 01018.
89 O’Donnell S T, Rittmann B E, Kavazanjian E. Geomicrobiology Journal, 2019, 36(6), 543.
90 Pham V P, Nakano A, van der Star W R L, et al. Environmental Geotechnics, 2018, 5(2), 79.
91 O’Donnell S T, Kavazanjian E, and Rittmann B E. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(12), 04017094.
92 Paassen L, Daza C M, Staal M, et al. Ecological Engineering, 2010, 36(2), 168.
93 Hamdan N, Kavazanjian E, Rittmann B E, et al. Geomicrobiology Journal, 2017, 34(2), 139.
94 Bergdale T E, Pinkelman R J, Hughes S R, et al. Journal of Biotechnology, 2012, 161(3), 181.
95 Ersan Y C, Hernandez-Sanabria E, Boon N, et al. Cement and Concrete Composites, 2016, 70, 159.
96 Erşan Y Ç, Wang J, Boon N, et al. In: Concrete Solutions. London, 2014, pp. 834.
97 Ersan Y C, Verbruggen H, De Graeve I, et al. Cement and Concrete Research, 2016, 83, 19.
98 Eran Y C, Boon N, Belie N D. In: Microorganisms-cementitious Materials Interactions: Final Conference of RILEM TC 253-MCI. RILEM Publications, 2018, pp. 475.
99 DeJong J T, Mortensen B M, Martinez B C, et al. Ecological Engineering, 2010, 36(2), 197.
100 Whiffin V S, Paassen L A, Harkes M P. Geomicrobiology Journal, 2007, 24, 417.
101 Rodriguez-Navarro C, Rodriguez-Gallego M, Ben Chekroun K, et al. Applied and Environmental Microbiology, 2003, 69(4), 2182.
102 Dong Y, Guo Z, Guo N, et al. Crystals, 2019, 9(12), 633.
103 Neerackal G M, Ndegwa P M, Joo H S, et al. Bioresource Technology, 2016, 206, 36.
104 Parker C D. Sewage and Industrial Wastes, 1951, 23(12), 1477.
105 Sanchez-Roman M, Vasconcelos C, Schmid T, et al. Geology, 2008, 36(11), 879.
106 Sanchez-Roman M, McKenzie J A, DeLuca R W A, et al. Earth Planetary Science Letter, 2009, 285, 131.
107 Budd D A. Earth-Science Reviews, 1997, 42, 1.
108 Alshalif A F, Irwan J M, Othman N, et al. MATEC Web of Conferences, 2016, 47, 01016.
109 Tambunan T, Juki M I, Othman N. MATEC Web of Conferences, 2019, 258(8), 01024.
110 Ganendra G, De Muynck W, Ho A, et al. Applied and Environmental Microbiology, 2014, 80(15), 4659.
111 Drake H, Astrom M E, Heim C, et al. Nature Communications, 2015, 6, 7020.
112 Bradbury H J, Turchyn A V. Earth and Planetary Science Letters, 2019, 519, 40.
113 Turchyn A V, Bradbury H J, Walker K, et al. Frontiers in Earth Science, 2021, 9, 618311.
114 Singh M. Current Science, 2019, 116(10), 1840.
115 Qian C, Chen H, Ren L, et al. Frontiers in Microbiology, 2015, 6(314), 1225.
116 Rosewitz J A, Wang S, Scarlata S F, et al. Applied Materials Today, 2021, 23, 101035.
117 Alshalif A F, Irwan J M, Tajarudin H A, et al. Materials(Basel), 2021, 14(16), 4575.
118 Ren L F, Qian C X. Journal of the Chinese Ceramic Society, 2014, 42(11), 1389(in Chinese).
任立夫, 钱春香. 硅酸盐学报, 2014, 42(11), 1389.
119 Quevedo M, Guyno T E, Muxi L. Biotechnology Letters, 1996, 18(12), 1363.
120 Christoph W, Sebastian K, Anne D, et al. Archaea, 2013, 6, 102972.
121 Zhang D J, Bai C, Tang T, et al. Frontiers of Environmental Science and Engineering in China, 2011, 5(2), 291.
122 Xu H, Wang C P, Wang K J. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(18), 238(in Chinese).
徐恒, 汪翠萍, 王凯军. 农业工程学报, 2014, 30(18), 238.
123 Knittel K, Boetius A. Annual Review Microbiology, 2009, 63, 311.
124 Reitner J. Palaeogeography Palaeoclimatology Palaeoecology, 2005, 227, 18.
125 Lee Y S, Park W. AMB Express, 2019, 9(1), 49.
126 Cheng H, Zhang X, Song H. Journal of Nanomaterials, 2014, 2014, 1.
127 Krause S, Liebetrau V, Loscher C R, et al. Geochimica et Cosmochimica Acta, 2018, 243, 116.
128 Yu X N. Preparation and cementing mechanism of bio-phosphate cement and composite cement. Ph.D. Thesis, Southeast University, China, 2016(in Chinese).
於孝牛. 生物磷酸盐水泥和复合水泥的研制及其胶结机理. 博士学位论文, 东南大学, 2016.
129 Chen X, Han Y, Zhang G, et al. Jianzhu Cailiao Xuebao/Journal of Building Materials, 2018, 21(3), 484.
130 Sun X H, Miao L C, Wu L Y, et al. Yantu Lixue/Rock and Soil Mechanics, 2018, 39, 224.
131 Parks S L. Kinetics of calcite precipitation by ureolytic bacteria under aerobic and anaerobic conditions. Master’s Thesis, Montana State University-Bozeman, USA, 2009.
132 Okwadha G D, Li J. Chemosphere, 2010, 81(9), 1143.
133 Qian C X, Wang R X, Zhan Q W. Engineering application basis of microbial mineralization, China Science Publishing and Media Ltd.(CSPM), China, 2015, pp.126(in Chinese).
钱春香, 王瑞兴, 詹其伟. 微生物矿化的工程应用基础, 科学出版社, 2015, pp.126.
134 Pan J X, Xie C Y, Yang L L, et al. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(12), 83(in Chinese).
潘建勋, 谢春燕, 杨莉莉, 等. 西南师范大学学报(自然科学版), 2019, 44(12), 83.
135 Chen R F, Miao L C, Sun X H, et al. Bulletin of the Chinese Ceramic Society, 2019, 277(10), 27(in Chinese).
陈润发, 缪林昌, 孙潇昊, 等. 硅酸盐通报, 2019, 277(10), 27.
136 Yuan J, Chen X, He H L, et al. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2), 641(in Chinese).
袁杰, 陈歆, 何虹霖, 等. 吉林大学学报(工学版), 2020, 50(2), 641.
137 Jia Q, Ding P. Journal of Building Materials, 2021, 24(3), 578(in Chinese).
贾强, 丁鹏. 建筑材料学报, 2021, 24(3), 578.
138 Chen J. Experimental study on bridging fixation and sand column cementation of bacillus pasteuri in porous media. Master’s Thesis, University of South China, China, 2014(in Chinese).
陈杰. 多孔介质中巴斯德芽孢杆菌的桥接固定及砂柱胶结实验研究. 硕士学位论文, 南华大学, 2014.
139 Whiffin V S. Microbial CaCO3 precipitation for the production of biocement. Ph.D. Thesis, Murdoch University, Singapore, 2004.
140 Zhao Q. Experimental study on soil improvement using microbial induced calcite precipitation(MICP). Ph.D. Thesis, China University of Geosciences, China, 2014(in Chinese).
赵茜. 微生物诱导碳酸钙沉淀(MICP)固化土壤实验研究. 博士学位论文, 中国地质大学, 2014.
141 Sun X H, Miao L C, Tong T Z, et al. Chinese Journal of Geotechnical Engineering, 2018, 40(7), 1309(in Chinese).
孙潇昊, 缪林昌, 童天志, 等. 岩土工程学报, 2018, 40(7), 1309.
142 Choi S G, Wang K, Wen Z, et al. Cement and Concrete Composites, 2017, 83, 209.
143 Lian J J, Wang C L, Yan Y, et al. Journal of Tianjin University(Science and Technology), 2019, 52(7), 669(in Chinese).
练继建, 王昶力, 闫玥, 等. 天津大学学报(自然科学与工程技术版), 2019, 52(7), 669.
144 Kulkarni P B, Nemade P D, Wagh M P. Civil Engineering Journal, 2020, 6(4), 679.
145 Guo H X, Zhang Y, Cheng X H, et al. Industrial Construction, 2015(7), 36(in Chinese).
郭红仙, 张越, 程晓辉, 等. 工业建筑, 2015(7), 36.
146 Wang C L. Experimental study on concrete cracks repaired by microorganisms. Masters Thesis, Tianjin University, China, 2016(in Chinese).
王昶力. 微生物修复混凝土裂缝的试验研究. 硕士学位论文, 天津大学, 2016.
147 Jia Q, Zhang X, Hou H T, et al. Journal of Building Materials, 2013, 16(4), 111(in Chinese).
贾强, 张鑫, 侯宏涛, 等. 建筑材料学报, 2013, 16(4), 111.
148 Joshi S, Goyal S, Reddy M S. Construction and Building Materials, 2021, 300, 124044.
149 Pal K N, Kumar S J, Majhi S, et al. Materials Today Communications, 2019, 18, 87.
[1] 朱亚光, 戎丹萍, 徐培蓁, 陈飞, 孙文堂. 供氧剂浓度和浸泡位置对MICP再生骨料性能的影响[J]. 材料导报, 2021, 35(4): 4074-4078.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed