1 Solar Energy Conversion Center, Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, China 2 Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300350, China
Abstract: In recent years, transparent conductive materials (TCM) have played a particularly important role as key components in advanced optoelectronic devices such as touch screens, liquid crystal displays (LCD), smart windows, solar cells, light emitting diodes (LED), etc. Indium tin oxide (ITO) thin films have excellent optical and electrical properties and are widely used as transparent conductive materials in optoelectronic devices. However, the scarcity and fragility of indium as well as the potential damage to the underlying film during the deposition process limit its application in future new optoelectronic devices. The development of TCM suitable for the application of high-performance optoelectronic devices is the focus of current research. In this review, the optical and electrical properties of transparent conductive oxides, ultra-thin metals and metal grids, dielectric layer/metal/dielectric layer (DMD), carbon nanotubes and graphene and other types of TCM, as well as the corresponding research strategies and important achievements in the application field in recent years, the challenges faced and the future development direction are reviewed.
通讯作者: *陈新亮,博士/副教授,博士研究生导师,美国密歇根大学(University of Michigan)访问研究学者(Research Scholar);主要从事光电子薄膜材料与器件领域(如晶体硅太阳电池-SHJ晶硅异质结太阳电池和TOPCon太阳电池、钙钛矿太阳电池、钙钛矿/晶硅叠层太阳电池、氧化物薄膜材料及器件、宽带隙半导体薄膜及器件、新能源/光电子器件集成设计/仿真计算等)的研究工作,主持和参加国家重点研发计划项目、国家自然科学基金项目、天津市自然科学基金重点和面上项目、以及企业研发合作项目等;发表SCI研究论文30余篇,申请并获得授权国家发明专利10余项。
1 Hecht D S, Hu L, Irvin G. Advanced Materials, 2011, 23, 1482.
2 Ellmer K. Nature Photonics, 2012, 6, 809.
3 Liang J, Li L, Niu X, et al. Nature Photonics, 2013, 7, 817.
4 Han B, Huang Y, Li R, et al. Nature Communications, 2014, 5, 5674.
5 Li D, Lai W, Zhang Y, et al. Advanced Materials, 2018, 30, 1704738.
6 Lee S J, Kim Y H, Kim J K, et al. Nanoscale, 2014, 6(20), 11828.
7 Wang J, Zhang J, Sundramoorthy A K, et al. Nanoscale, 2014, 6, 4560.
8 Sandeep K, Hazel R G, Gaurav G, et al. Energies, 2022, 15, 8698.
9 Zhou Z, Zhang Y, Chen X, et al. ACS Applied Energy Materials, 2020, 3 (2), 1574.
10 Liu H, Li H, Tao J, et al. ACS Applied Materials & Interfaces, 2023, 15 (18), 22195.
11 Niang K M, Cho J, Sadhanala A, et al. Applications and Materials Science, 2017, 214(2), 1600470.
12 Akhmedov A K, Abduev AK, Murliev E K, et al. Materials, 2023, 16, 3740.
13 Rupprecht G Z. Zeitschrift Fur Physik, 1954, 139, 504.
14 Sersland D R. Psychology & Marketing, 2017, 34, 661.
15 BädekerK. Annal of Physics, 1907, 22, 749.
16 Zheng Q, Kim J. In:Graphene for transparent conductors:synthesis, properties and applications, Springer, New York, 2015, pp.1.
17 Kim I Y, Kim J S. Journal of Nanoscience and Nanotechnology, 2014, 14, 8275.
18 Ghosh S, Saha M, Paul S, et al. Small, 2017, 13, 1602469.
19 Ren Y, Zhao G, Chen Y. Applied Surface Science, 2011, 258, 914.
20 Ren Y, Wang Q, Zhou X, et al. Journal of Electronic Materials, 2017, 46, 6864.
21 He L, Luan C, Feng X, et al. Ceramics International, 2019, 45, 10196.
22 Reddy N P, Muniramaiah R, Santhosh R, et al. Journal of Materials Chemistry C, 2022, 10, 7997.
23 Wang D, Kyaw A K K, Gupta V, et al. Advanced Energy Materials, 2013, 3, 1161.
24 Sibin K P, Srinivas G, Shashikala H D, et al. Solar Energy Materials and Solar Cells, 2017, 172, 277.
25 Leterrier Y, Médico L, Demarco F, et al. Thin Solid Films, 2004, 460, 156.
26 Ren Y, Liu P, Liu R X, et al. Journal of Alloys and Compounds, 2022, 893, 162304.
27 Das R, Das H S. Journal of the Institution of Engineers (India): Series D, 2017, 98, 85.
28 Zhang H, Yang S, Liu H, et al. Journal of Semiconductors, 2011, 32, 043002.
29 Zhu Y F, Wu Y, Cao F, et al. Journal of Materials Science: Materials in Electronics, 2022, 33, 5696.
30 Matur U C, Duru I P, Akcan D. Ceramics International, 2022, 48, 19090.
31 Ren Y, He H, Wang Y, et al. Materials Science in Semiconductor Processing, 2021, 126, 105675.
32 Ren Y, Fang T, He H, et al. Chemical Engineering Journal, 2020, 308, 122617.
33 Zhang J, Willis J, Yang Z, et al. Cell Reports Physical Science, 2022, 3, 100801.
34 Yan Z, Shi J, Chen S, et al. Solar Energy Materials and Solar Cells, 2023, 253, 112244.
35 Kaleemulla S, Reddy A S, Uthanna S, et al. Journal of Alloys and Compounds, 2009, 479, 589.
36 Minami T, Nanto H, Takata S. Applied Physics Letters, 1982, 41, 958.
37 Sierros K A, Banerjee D A, Morris N J, et al. Thin Solid Films, 2010, 519, 325.
38 Yu S H, Jia C H, Zheng H W, et al. Materials Letters, 2012, 85, 68.
39 Sierros K A, Hecht D S, Banerjee D A, et al. Thin Solid Films, 2010, 518, 6977.
40 Zhang Y L, Liu Z, Ji C, et al. ACS Applied Energy Materials, 2021, 4, 6553.
41 Madaria A R, Kumar A, Ishikawa F N, et al. Nano Research, 2010, 3, 564.
42 Nam H, Seo D, Yun H, et al. Metals, 2017, 7, 176.
43 Stewart I E, Rathmell A R, Yan L, et al. Nanoscale, 2014, 6, 5980.
44 Zhang C, Ji C, Park Y B, et al. Advanced Optical Materials, 2020, 9, 2001298.
45 Bi Y G, Liu Y F, Zhang X L, et al. Advanced Optical Materials, 2019, 7, 1800778.
46 Akio S, Tatsuhiko M, Yoshiaki S, et al. Japanese Journal of Applied Physics, 1996, 35, 5457.
47 Formica N, Ghosh D S, Carrilero A, et al. ACS Applied Materials and Interfaces, 2013, 5, 3048.
48 Schubert S, Meiss J, Müller-Meskamp L, et al. Advanced Energy Materials, 2013, 3, 438.
49 Jeong E, Zhao G, Yu S M, et al. Applied Surface Science, 2020, 528, 146989.
50 Schubert S, Müller-Meskamp L, Leo K. Advanced Functional Materials, 2014, 24, 6668.
51 Xu L H, Ou Q D, Li Y Q, et al. ACS Nano, 2016, 10, 1625.
52 Bellchambers P, Walker M, Huband S, et al. ChemNanoMater, 2019, 5, 619.
53 Xu G, Shen L, Cui C, et al. Advanced Functional Materials, 2017, 27, 1605908.
54 Bi Y G, Yi F S, Ji J H, et al. IEEE Transactions on Nanotechnology, 2018, 17, 1077.
55 Hanmandlu C, Liu C C, Chen C Y, et al. ACS Applied Matererials and Interfaces, 2018, 10, 17973.
56 Zhao D, Zhang C, Kim H, et al. Advanced Energy Materials, 2015, 5, 1500768.
57 Girtan M. Solar Energy Materials and Solar Cells, 2012, 100, 153.
58 Zou J, Li C, Chang C, et al. Advanced Materials, 2014, 26, 3618.
59 Yuan C, Huang J, Dong Y, et al. ACS Applied Materials and Interfaces, 2020, 12, 26659.
60 Xue Z, Liu X, Zhang N, et al. ACS Applied Materials and Interfaces, 2014, 6, 16403.
61 Salinas J F, Yip H L, Chueh C C, et al. Advanced Materials, 2012, 24, 6362.
62 Dhar A, Alford T L. Journal of Applied Physics, 2012, 112, 103113.
63 Kang H, Jung S, Jeong S, et al. Nature Communications, 2015, 6, 6503.
64 Jeong S, Jung S, Kang H, et al. Advanced Functional Materials, 2017, 27, 1606842.
65 Ghosh D S, Leo K. Advanced Electronic Materials, 2017, 3, 1600518.
66 Bae S K, Choo D C, Kang H S, et al. Nano Energy, 2020, 71, 104649.
67 Ham J, Lee J L. Advanced Energy Materials, 2014, 4, 1400539.
68 Bi Y G, Feng J, Ji J H, et al. Nanoscale, 2016, 8, 10010.
69 Stec H M, Hatton R A. ACS Applied Materials and Interfaces, 2012, 4, 6013.
70 Lee J, Walker M, Varagnolo S, et al. ACS Applied Energy Materials, 2019, 2, 5198.
71 Wang H, Wang Z, Xu X, et al. Advanced Optical Materials, 2019, 8, 1901320.
72 Zhang C, Zhao D, Gu D, et al. Advanced Materials, 2014, 26, 5696.
73 Gu D Z C, Wu Y K. ACS Nano, 2014, 8, 10343.
74 Zhang C, Huang Q, Cui Q, et al. ACS Applied Materials and Interfaces, 2019, 11, 27216.
75 Ji C, Liu D, Zhang C, et al. Nature Communication, 2020, 11, 3367.
76 Zhao G, Jeong E, Lee S, et al. Applied Surface Science, 2021, 562, 150135.
77 Lee J L, Yi Cui, Peter P. Journal of the American Chemical Society, 2008, 8, 2.
78 Guo H, Lin N, Chen Y, et al. Science Reports, 2013, 3, 2323.
79 Park Y J, Song A R, Chung K B, et al. Journal of Materials Chemistry C, 2022, 10, 880.
80 Burgues-ceballos I, Kehagias N, Sotomayor-torres C M, et al. Solar Energy Material Solar Cells, 2014, 127, 50.
81 Lim J W, Lee Y T, Pandey R, et al. Optics Express, 2014, 22, 26891.
82 Kim W, Kim S, Kang I, et al. ChemSusChem, 2016, 9, 1042.
83 Mondal I, Kumar A, Rao K D R M, et al. Journal of Physics and Che-mistry of Solids, 2018, 118, 232.
84 Liu Y, Shen S, Hu J, et al. Optics Express, 2016, 24, 25774.
85 Morfa A J, Akinoglu E M, Subbiah J, et al. Journal of Applied Physics, 2013, 114, 054502.
86 Catrysse P B, Fan S. Nano letters, 2010, 10, 2944.
87 Han S, Chae Y, Kim J Y, et al. Journal of Materials Chemistry C, 2018, 6(16), 4389.
88 Chen X, Nie S, Guo W, et al. Advanced Electronic Materials, 2019, 5(5), 1800991.
89 Wang H, Li K, Tao Y, et al. Nanoscale Research Letters, 2017, 12, 77.
90 Kim C L, Jung C W, Oh Y J, et al. NPG Asia Materials, 2017, 9, e438.
91 Kou P, Yang L, Chang C, et al. Scientific Reports, 2017, 7, 42052.
92 Zhao G, Kim S M, Lee S G, et al. Advanced Functional Materials, 2016, 26, 4180.
93 Lee J, Lee P, Lee H, et al. Nanoscale, 2012, 4, 6408.
94 Lee J G, Kim D Y, Lee J H, et al. Advanced Functional Materials, 2017, 27, 1602548.
95 Li Y, Mao L, Gao Y, et al. Solar Energy Materials and Solar Cells, 2013, 113, 85.
96 Khan A, Lee S, Jang T, et al. Small, 2016, 12, 3021.
97 Barnes T M, Reese M O, Bergeson J D, et al. Advanced Energy Materials, 2012, 2, 353.
98 Hauger T C, Zeberoff A, Worfolk B J, et al. Solar Energy Materials and Solar Cells, 2014, 124, 247.
99 Fan J C C, Bachner F J, Foley G H, et al. Applied Physics Letters, 1974, 25, 693.
100 Bou A, Torchio P, Barakel D, et al. Thin Solid Films, 2016, 617, 86.
101 Liu Z, Zou Y, Ji C, et al. ACS Applied Materials and Interfaces, 2021, 13, 58539.
102 Zhao P, Kim S, Yoon S, et al. Thin Solid Films, 2018, 665, 137.
103 Lee S H, Kim G, Lim J W, et al. Solar Energy Materials and Solar Cells, 2018, 186, 378.
104 Park Y J, Song A R, Chung K B, et al. Journal of Materials Chemistry C, 2022, 10, 880.
105 Sharma V, Kumar P, Kumar A, et al. Solar Energy Materials and Solar Cells, 2017, 169, 122.
106 Maniyara R A, Mkhitaryan V K, Chen T L, et al. Nature Communications, 2016, 7, 13771.
107 Zhao G, Shen W, Jeong E, et al. ACS Applied Materials and Interfaces, 2018, 10, 27510.
108 Wang Z, Zhu X, Zuo S, et al. Advanced Functional Materials, 2020, 30(4), 1908298.
109 Kim D. Applied Surface Science, 2010, 256, 1774.
110 Zhang D, Alami A H, Wallace C, et al. Solar RRL, 2022, 6, 2100830.
111 Lee S Y, Hwang J Y. Scientific Reports, 2020, 10, 9697.
112 Lee C, Kim H, Hwang B. Journal of Alloys and Compounds, 2019, 773, 361.
113 Hebba R S, Isloo A M, Inamuddin, et al. Environmental Chemistry Letters, 2017, 15, 643.
114 Syu J Y, Chen Y M, Xu K X, et al. RSC Advances, 2016, 6, 32746.
115 Panzarini E, Mariano S, Tacconi S, et al. Nanomaterials, 2021, 11(1), 2.
116 Jonge N, Allioux M, Doytcheva M, et al. Applied Physics Letters, 2004, 85, 1607.
117 Salvatierra R V, Cava C E, Roman L S, et al. Advanced Functional Materials, 2013, 23, 1490.
118 Kim S. Journal of Photonics for Energy, 2012, 2, 021010.
119 Lijima S. Nature, 1991, 354, 56.
120 Lijima S, Ichihashi T. Nature, 1993, 363, 603.
121 Tenent R C, Barnes T M, Bergeson J D, et al. Advanced Materials, 2009, 21, 3210.
122 Burrows P E, Gu G, Forrest S R, et al. Journal of Applied Physics, 2000, 87, 3080.
123 Meyer J, Görrn P, Hamwi S, et al. Applied Physics Letters, 2008, 93, 073308.
124 Liu H, Wu Z, Hu J, et al. Applied Physics Letters, 2013, 103, 043309.
125 Park J H, Ahn K J, Na S I, et al. Solar Energy Materials and Solar Cells, 2011, 95, 657.
126 Gao J, Mu X, Li X Y, et al. Nanotechnology, 2013, 24, 435201.
127 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306, 666.
128 Costa M C F, Marangoni V S, Ng P R, et al. Nanomaterials, 2021, 11, 551.
129 Pumera M, Sofer Z. Chemical Society Reviews, 2017, 46, 4450.
130 Watcharotone S, Dikin AD, Sasha Stankovich, et al. Nano Letters, 2007, 7, 1888.
131 Georgakilas V, Tiwari J N, K. C. Kemp K C, et al. Chemical Reviews, 2016, 116, 5464.
132 Blake P, Brimicombe P D, D B, Nair R R, et al. Nano Letters, 2008, 8, 1704.
133 Zhang Q, Wei W, Li J, et al. Synthetic Metals, 2016, 221, 192.
134 Cao Q, Hur S H, Zhu Z T, et al. Advanced Materials, 2006, 18, 304.
135 Li C, Li Z, Zhu H, et al. The Journal of Physical Chemistry C, 2010, 114, 14008.
136 Zhou Y, Shimada S, Saito T, et al. Carbon, 2015, 87, 61.
137 Kim B J, Han S H, Park J S. Thin Solid Films, 2014, 572, 68.
138 Oh M J , Son G-C, Kim M, et al. Nanomaterials, 2023, 13 (15), 2249.
139 Chandrashekar B N, Deng B, Smitha A S, et al. Advanced Materials, 2015, 27, 5210.
140 Pohl H A. The Journal of Chemical Physics, 1962, 66, 2085.
141 Chiang C K, Fincher C R, Park Y W, et al. Physical Review Letters, 1977, 39, 1098.
142 Chiang C K, Druy M A, Gaul A J, et al. Journal of the American Chemical Society, 1978, 100, 1013.
143 Kim Y H, Sachse C, Machala M L, et al. Advanced Functional Materials, 2011, 21, 1076.
144 Shi H, Liu C, Jiang Q, et al. Advanced Electronic Materials, 2015, 1, 1500017.
145 Sun K, Zhang S, Li P, et al. Journal of Materials Science: Materials in Electronics, 2015, 26, 4438.
146 Kim N, Kee S, Lee S H, et al. Advanced Materials, 2014, 26, 2268.
147 Wang Y, P Raphae, Yan H, et al. Science Advances, 2017, 3, e1602076.
148 Guan X, Pan L, Fan Z. Membranes (Basel), 2021, 11, 788.
149 Kukhta A V, Paddubskaya A G, Kuzhir P P, et al. Synthetic Metals, 2016, 222, 192.
150 Tao H, Wang H, Yuan S, et al. SID, 2017, 48, 972.