Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 23040045-13    https://doi.org/10.11896/cldb.23040045
  无机非金属及其复合材料 |
透明导电材料研究进展
张聪1,2, 梁柄权1,2, 王晓峰1,2, 陈新亮1,2,*, 侯国付1,2, 赵颖1,2, 张晓丹1,2
1 南开大学光电子薄膜器件与技术研究所,太阳能转换中心,天津 300350
2 南开大学天津市光电子薄膜器件与技术重点实验室,天津 300350
Research Progress of Transparent Conductive Materials
ZHANG Cong1,2, LIANG Bingquan1,2, WANG Xiaofeng1,2, CHEN Xinliang1,2,* , HOU Guofu1,2, ZHAO Ying1,2, ZHANG Xiaodan1,2
1 Solar Energy Conversion Center, Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, China
2 Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300350, China
下载:  全 文 ( PDF ) ( 41357KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,透明导电材料(Transparent conductive materials,TCM)作为触摸屏、液晶显示器(LCD)、智能窗、太阳电池(Solar cells)、发光二极管(LED)等先进光电子器件中的关键组件,其作用尤其重要。氧化铟锡(ITO)薄膜具有优异的光学和电学性能,是光电器件中应用广泛的透明导电材料。然而,铟元素的稀缺性、易碎性以及沉积过程中对底层薄膜的潜在损坏限制了其在未来新型光电子器件中的应用。开发适应高性能光电器件应用的TCM成为当前研究的重点。本文综述了透明导电氧化物、超薄金属和金属网格、介质层/金属/介质层(Dielectric/metal/dielectric, DMD)、碳纳米管和石墨烯等类型的TCM光电性能、应用领域、近年来相应的研究策略和重要成果、面临的挑战以及未来发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张聪
梁柄权
王晓峰
陈新亮
侯国付
赵颖
张晓丹
关键词:  透明导电材料  透明导电氧化物  超薄金属和金属网格  纳米材料    
Abstract: In recent years, transparent conductive materials (TCM) have played a particularly important role as key components in advanced optoelectronic devices such as touch screens, liquid crystal displays (LCD), smart windows, solar cells, light emitting diodes (LED), etc. Indium tin oxide (ITO) thin films have excellent optical and electrical properties and are widely used as transparent conductive materials in optoelectronic devices. However, the scarcity and fragility of indium as well as the potential damage to the underlying film during the deposition process limit its application in future new optoelectronic devices. The development of TCM suitable for the application of high-performance optoelectronic devices is the focus of current research. In this review, the optical and electrical properties of transparent conductive oxides, ultra-thin metals and metal grids, dielectric layer/metal/dielectric layer (DMD), carbon nanotubes and graphene and other types of TCM, as well as the corresponding research strategies and important achievements in the application field in recent years, the challenges faced and the future development direction are reviewed.
Key words:  transparent conductive materials    transparent conductive oxides    ultra-thin metals and metal grids    nanomaterials
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TM914.4+2  
基金资助: 国家重点研发计划(2022YFB4200102);天津市自然科学基金(21JCYBJC00270)
通讯作者:  *陈新亮,博士/副教授,博士研究生导师,美国密歇根大学(University of Michigan)访问研究学者(Research Scholar);主要从事光电子薄膜材料与器件领域(如晶体硅太阳电池-SHJ晶硅异质结太阳电池和TOPCon太阳电池、钙钛矿太阳电池、钙钛矿/晶硅叠层太阳电池、氧化物薄膜材料及器件、宽带隙半导体薄膜及器件、新能源/光电子器件集成设计/仿真计算等)的研究工作,主持和参加国家重点研发计划项目、国家自然科学基金项目、天津市自然科学基金重点和面上项目、以及企业研发合作项目等;发表SCI研究论文30余篇,申请并获得授权国家发明专利10余项。   
作者简介:  张聪,2017年6月毕业于山东理工大学,获得工学学士学位,南开大学光电子薄膜器件与技术研究所硕士研究生。主要研究领域为超薄金属及氧化物/金属/氧化物(OMO)薄膜设计及光电子器件应用。
引用本文:    
张聪, 梁柄权, 王晓峰, 陈新亮, 侯国付, 赵颖, 张晓丹. 透明导电材料研究进展[J]. 材料导报, 2024, 38(6): 23040045-13.
ZHANG Cong, LIANG Bingquan, WANG Xiaofeng, CHEN Xinliang , HOU Guofu, ZHAO Ying, ZHANG Xiaodan. Research Progress of Transparent Conductive Materials. Materials Reports, 2024, 38(6): 23040045-13.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23040045  或          https://www.mater-rep.com/CN/Y2024/V38/I6/23040045
1 Hecht D S, Hu L, Irvin G. Advanced Materials, 2011, 23, 1482.
2 Ellmer K. Nature Photonics, 2012, 6, 809.
3 Liang J, Li L, Niu X, et al. Nature Photonics, 2013, 7, 817.
4 Han B, Huang Y, Li R, et al. Nature Communications, 2014, 5, 5674.
5 Li D, Lai W, Zhang Y, et al. Advanced Materials, 2018, 30, 1704738.
6 Lee S J, Kim Y H, Kim J K, et al. Nanoscale, 2014, 6(20), 11828.
7 Wang J, Zhang J, Sundramoorthy A K, et al. Nanoscale, 2014, 6, 4560.
8 Sandeep K, Hazel R G, Gaurav G, et al. Energies, 2022, 15, 8698.
9 Zhou Z, Zhang Y, Chen X, et al. ACS Applied Energy Materials, 2020, 3 (2), 1574.
10 Liu H, Li H, Tao J, et al. ACS Applied Materials & Interfaces, 2023, 15 (18), 22195.
11 Niang K M, Cho J, Sadhanala A, et al. Applications and Materials Science, 2017, 214(2), 1600470.
12 Akhmedov A K, Abduev AK, Murliev E K, et al. Materials, 2023, 16, 3740.
13 Rupprecht G Z. Zeitschrift Fur Physik, 1954, 139, 504.
14 Sersland D R. Psychology & Marketing, 2017, 34, 661.
15 BädekerK. Annal of Physics, 1907, 22, 749.
16 Zheng Q, Kim J. In:Graphene for transparent conductors:synthesis, properties and applications, Springer, New York, 2015, pp.1.
17 Kim I Y, Kim J S. Journal of Nanoscience and Nanotechnology, 2014, 14, 8275.
18 Ghosh S, Saha M, Paul S, et al. Small, 2017, 13, 1602469.
19 Ren Y, Zhao G, Chen Y. Applied Surface Science, 2011, 258, 914.
20 Ren Y, Wang Q, Zhou X, et al. Journal of Electronic Materials, 2017, 46, 6864.
21 He L, Luan C, Feng X, et al. Ceramics International, 2019, 45, 10196.
22 Reddy N P, Muniramaiah R, Santhosh R, et al. Journal of Materials Chemistry C, 2022, 10, 7997.
23 Wang D, Kyaw A K K, Gupta V, et al. Advanced Energy Materials, 2013, 3, 1161.
24 Sibin K P, Srinivas G, Shashikala H D, et al. Solar Energy Materials and Solar Cells, 2017, 172, 277.
25 Leterrier Y, Médico L, Demarco F, et al. Thin Solid Films, 2004, 460, 156.
26 Ren Y, Liu P, Liu R X, et al. Journal of Alloys and Compounds, 2022, 893, 162304.
27 Das R, Das H S. Journal of the Institution of Engineers (India): Series D, 2017, 98, 85.
28 Zhang H, Yang S, Liu H, et al. Journal of Semiconductors, 2011, 32, 043002.
29 Zhu Y F, Wu Y, Cao F, et al. Journal of Materials Science: Materials in Electronics, 2022, 33, 5696.
30 Matur U C, Duru I P, Akcan D. Ceramics International, 2022, 48, 19090.
31 Ren Y, He H, Wang Y, et al. Materials Science in Semiconductor Processing, 2021, 126, 105675.
32 Ren Y, Fang T, He H, et al. Chemical Engineering Journal, 2020, 308, 122617.
33 Zhang J, Willis J, Yang Z, et al. Cell Reports Physical Science, 2022, 3, 100801.
34 Yan Z, Shi J, Chen S, et al. Solar Energy Materials and Solar Cells, 2023, 253, 112244.
35 Kaleemulla S, Reddy A S, Uthanna S, et al. Journal of Alloys and Compounds, 2009, 479, 589.
36 Minami T, Nanto H, Takata S. Applied Physics Letters, 1982, 41, 958.
37 Sierros K A, Banerjee D A, Morris N J, et al. Thin Solid Films, 2010, 519, 325.
38 Yu S H, Jia C H, Zheng H W, et al. Materials Letters, 2012, 85, 68.
39 Sierros K A, Hecht D S, Banerjee D A, et al. Thin Solid Films, 2010, 518, 6977.
40 Zhang Y L, Liu Z, Ji C, et al. ACS Applied Energy Materials, 2021, 4, 6553.
41 Madaria A R, Kumar A, Ishikawa F N, et al. Nano Research, 2010, 3, 564.
42 Nam H, Seo D, Yun H, et al. Metals, 2017, 7, 176.
43 Stewart I E, Rathmell A R, Yan L, et al. Nanoscale, 2014, 6, 5980.
44 Zhang C, Ji C, Park Y B, et al. Advanced Optical Materials, 2020, 9, 2001298.
45 Bi Y G, Liu Y F, Zhang X L, et al. Advanced Optical Materials, 2019, 7, 1800778.
46 Akio S, Tatsuhiko M, Yoshiaki S, et al. Japanese Journal of Applied Physics, 1996, 35, 5457.
47 Formica N, Ghosh D S, Carrilero A, et al. ACS Applied Materials and Interfaces, 2013, 5, 3048.
48 Schubert S, Meiss J, Müller-Meskamp L, et al. Advanced Energy Materials, 2013, 3, 438.
49 Jeong E, Zhao G, Yu S M, et al. Applied Surface Science, 2020, 528, 146989.
50 Schubert S, Müller-Meskamp L, Leo K. Advanced Functional Materials, 2014, 24, 6668.
51 Xu L H, Ou Q D, Li Y Q, et al. ACS Nano, 2016, 10, 1625.
52 Bellchambers P, Walker M, Huband S, et al. ChemNanoMater, 2019, 5, 619.
53 Xu G, Shen L, Cui C, et al. Advanced Functional Materials, 2017, 27, 1605908.
54 Bi Y G, Yi F S, Ji J H, et al. IEEE Transactions on Nanotechnology, 2018, 17, 1077.
55 Hanmandlu C, Liu C C, Chen C Y, et al. ACS Applied Matererials and Interfaces, 2018, 10, 17973.
56 Zhao D, Zhang C, Kim H, et al. Advanced Energy Materials, 2015, 5, 1500768.
57 Girtan M. Solar Energy Materials and Solar Cells, 2012, 100, 153.
58 Zou J, Li C, Chang C, et al. Advanced Materials, 2014, 26, 3618.
59 Yuan C, Huang J, Dong Y, et al. ACS Applied Materials and Interfaces, 2020, 12, 26659.
60 Xue Z, Liu X, Zhang N, et al. ACS Applied Materials and Interfaces, 2014, 6, 16403.
61 Salinas J F, Yip H L, Chueh C C, et al. Advanced Materials, 2012, 24, 6362.
62 Dhar A, Alford T L. Journal of Applied Physics, 2012, 112, 103113.
63 Kang H, Jung S, Jeong S, et al. Nature Communications, 2015, 6, 6503.
64 Jeong S, Jung S, Kang H, et al. Advanced Functional Materials, 2017, 27, 1606842.
65 Ghosh D S, Leo K. Advanced Electronic Materials, 2017, 3, 1600518.
66 Bae S K, Choo D C, Kang H S, et al. Nano Energy, 2020, 71, 104649.
67 Ham J, Lee J L. Advanced Energy Materials, 2014, 4, 1400539.
68 Bi Y G, Feng J, Ji J H, et al. Nanoscale, 2016, 8, 10010.
69 Stec H M, Hatton R A. ACS Applied Materials and Interfaces, 2012, 4, 6013.
70 Lee J, Walker M, Varagnolo S, et al. ACS Applied Energy Materials, 2019, 2, 5198.
71 Wang H, Wang Z, Xu X, et al. Advanced Optical Materials, 2019, 8, 1901320.
72 Zhang C, Zhao D, Gu D, et al. Advanced Materials, 2014, 26, 5696.
73 Gu D Z C, Wu Y K. ACS Nano, 2014, 8, 10343.
74 Zhang C, Huang Q, Cui Q, et al. ACS Applied Materials and Interfaces, 2019, 11, 27216.
75 Ji C, Liu D, Zhang C, et al. Nature Communication, 2020, 11, 3367.
76 Zhao G, Jeong E, Lee S, et al. Applied Surface Science, 2021, 562, 150135.
77 Lee J L, Yi Cui, Peter P. Journal of the American Chemical Society, 2008, 8, 2.
78 Guo H, Lin N, Chen Y, et al. Science Reports, 2013, 3, 2323.
79 Park Y J, Song A R, Chung K B, et al. Journal of Materials Chemistry C, 2022, 10, 880.
80 Burgues-ceballos I, Kehagias N, Sotomayor-torres C M, et al. Solar Energy Material Solar Cells, 2014, 127, 50.
81 Lim J W, Lee Y T, Pandey R, et al. Optics Express, 2014, 22, 26891.
82 Kim W, Kim S, Kang I, et al. ChemSusChem, 2016, 9, 1042.
83 Mondal I, Kumar A, Rao K D R M, et al. Journal of Physics and Che-mistry of Solids, 2018, 118, 232.
84 Liu Y, Shen S, Hu J, et al. Optics Express, 2016, 24, 25774.
85 Morfa A J, Akinoglu E M, Subbiah J, et al. Journal of Applied Physics, 2013, 114, 054502.
86 Catrysse P B, Fan S. Nano letters, 2010, 10, 2944.
87 Han S, Chae Y, Kim J Y, et al. Journal of Materials Chemistry C, 2018, 6(16), 4389.
88 Chen X, Nie S, Guo W, et al. Advanced Electronic Materials, 2019, 5(5), 1800991.
89 Wang H, Li K, Tao Y, et al. Nanoscale Research Letters, 2017, 12, 77.
90 Kim C L, Jung C W, Oh Y J, et al. NPG Asia Materials, 2017, 9, e438.
91 Kou P, Yang L, Chang C, et al. Scientific Reports, 2017, 7, 42052.
92 Zhao G, Kim S M, Lee S G, et al. Advanced Functional Materials, 2016, 26, 4180.
93 Lee J, Lee P, Lee H, et al. Nanoscale, 2012, 4, 6408.
94 Lee J G, Kim D Y, Lee J H, et al. Advanced Functional Materials, 2017, 27, 1602548.
95 Li Y, Mao L, Gao Y, et al. Solar Energy Materials and Solar Cells, 2013, 113, 85.
96 Khan A, Lee S, Jang T, et al. Small, 2016, 12, 3021.
97 Barnes T M, Reese M O, Bergeson J D, et al. Advanced Energy Materials, 2012, 2, 353.
98 Hauger T C, Zeberoff A, Worfolk B J, et al. Solar Energy Materials and Solar Cells, 2014, 124, 247.
99 Fan J C C, Bachner F J, Foley G H, et al. Applied Physics Letters, 1974, 25, 693.
100 Bou A, Torchio P, Barakel D, et al. Thin Solid Films, 2016, 617, 86.
101 Liu Z, Zou Y, Ji C, et al. ACS Applied Materials and Interfaces, 2021, 13, 58539.
102 Zhao P, Kim S, Yoon S, et al. Thin Solid Films, 2018, 665, 137.
103 Lee S H, Kim G, Lim J W, et al. Solar Energy Materials and Solar Cells, 2018, 186, 378.
104 Park Y J, Song A R, Chung K B, et al. Journal of Materials Chemistry C, 2022, 10, 880.
105 Sharma V, Kumar P, Kumar A, et al. Solar Energy Materials and Solar Cells, 2017, 169, 122.
106 Maniyara R A, Mkhitaryan V K, Chen T L, et al. Nature Communications, 2016, 7, 13771.
107 Zhao G, Shen W, Jeong E, et al. ACS Applied Materials and Interfaces, 2018, 10, 27510.
108 Wang Z, Zhu X, Zuo S, et al. Advanced Functional Materials, 2020, 30(4), 1908298.
109 Kim D. Applied Surface Science, 2010, 256, 1774.
110 Zhang D, Alami A H, Wallace C, et al. Solar RRL, 2022, 6, 2100830.
111 Lee S Y, Hwang J Y. Scientific Reports, 2020, 10, 9697.
112 Lee C, Kim H, Hwang B. Journal of Alloys and Compounds, 2019, 773, 361.
113 Hebba R S, Isloo A M, Inamuddin, et al. Environmental Chemistry Letters, 2017, 15, 643.
114 Syu J Y, Chen Y M, Xu K X, et al. RSC Advances, 2016, 6, 32746.
115 Panzarini E, Mariano S, Tacconi S, et al.
Nanomaterials, 2021, 11(1), 2.
116 Jonge N, Allioux M, Doytcheva M, et al.
Applied Physics Letters, 2004, 85, 1607.
117 Salvatierra R V, Cava C E, Roman L S, et al. Advanced Functional Materials, 2013, 23, 1490.
118 Kim S. Journal of Photonics for Energy, 2012, 2, 021010.
119 Lijima S.
Nature, 1991, 354, 56.
120 Lijima S, Ichihashi T.
Nature, 1993, 363, 603.
121 Tenent R C, Barnes T M, Bergeson J D, et al.
Advanced Materials, 2009, 21, 3210.
122 Burrows P E, Gu G, Forrest S R, et al. Journal of Applied Physics, 2000, 87, 3080.
123 Meyer J, Görrn P, Hamwi S, et al. Applied Physics Letters, 2008, 93, 073308.
124 Liu H, Wu Z, Hu J, et al.
Applied Physics Letters, 2013, 103, 043309.
125 Park J H, Ahn K J, Na S I, et al.
Solar Energy Materials and Solar Cells, 2011, 95, 657.
126 Gao J, Mu X, Li X Y, et al.
Nanotechnology, 2013, 24, 435201.
127 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306, 666.
128 Costa M C F, Marangoni V S, Ng P R, et al.
Nanomaterials, 2021, 11, 551.
129 Pumera M, Sofer Z.
Chemical Society Reviews, 2017, 46, 4450.
130 Watcharotone S, Dikin AD, Sasha Stankovich, et al.
Nano Letters, 2007, 7, 1888.
131 Georgakilas V, Tiwari J N, K. C. Kemp K C, et al.
Chemical Reviews, 2016, 116, 5464.
132 Blake P, Brimicombe P D, D B, Nair R R, et al.
Nano Letters, 2008, 8, 1704.
133 Zhang Q, Wei W, Li J, et al.
Synthetic Metals, 2016, 221, 192.
134 Cao Q, Hur S H, Zhu Z T, et al. Advanced Materials, 2006, 18, 304.
135 Li C, Li Z, Zhu H, et al. The Journal of Physical Chemistry C, 2010, 114, 14008.
136 Zhou Y, Shimada S, Saito T, et al. Carbon, 2015, 87, 61.
137 Kim B J, Han S H, Park J S. Thin Solid Films, 2014, 572, 68.
138 Oh M J , Son G-C, Kim M, et al. Nanomaterials, 2023, 13 (15), 2249.
139 Chandrashekar B N, Deng B, Smitha A S, et al. Advanced Materials, 2015, 27, 5210.
140 Pohl H A. The Journal of Chemical Physics, 1962, 66, 2085.
141 Chiang C K, Fincher C R, Park Y W, et al. Physical Review Letters, 1977, 39, 1098.
142 Chiang C K, Druy M A, Gaul A J, et al. Journal of the American Chemical Society, 1978, 100, 1013.
143 Kim Y H, Sachse C, Machala M L, et al. Advanced Functional Materials, 2011, 21, 1076.
144 Shi H, Liu C, Jiang Q, et al. Advanced Electronic Materials, 2015, 1, 1500017.
145 Sun K, Zhang S, Li P, et al. Journal of Materials Science: Materials in Electronics, 2015, 26, 4438.
146 Kim N, Kee S, Lee S H, et al. Advanced Materials, 2014, 26, 2268.
147 Wang Y, P Raphae, Yan H, et al. Science Advances, 2017, 3, e1602076.
148 Guan X, Pan L, Fan Z. Membranes (Basel), 2021, 11, 788.
149 Kukhta A V, Paddubskaya A G, Kuzhir P P, et al. Synthetic Metals, 2016, 222, 192.
150 Tao H, Wang H, Yuan S, et al. SID, 2017, 48, 972.
[1] 成翊榕, 李万万. 基于光热纳米材料的热信号侧向层析技术研究进展[J]. 材料导报, 2024, 38(8): 22110152-6.
[2] 张昱, 梁沛林, 何钧宇, 杨冠南, 崔成强. 火花放电法制备纳米材料及其应用综述[J]. 材料导报, 2024, 38(7): 22080233-9.
[3] 苏咸凯, 解志鹏, 张达, 侯圣平, 杨斌, 梁风. 单壁碳纳米角的制备及电化学应用进展[J]. 材料导报, 2024, 38(6): 22100192-13.
[4] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[5] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[6] 李亚婷, 刘仲明, 陈钰, 郭彦彤, 杨欢, 张海燕. 石墨烯纳米复合材料在电化学核酸传感器中的应用[J]. 材料导报, 2024, 38(24): 23070077-7.
[7] 伍红雨, 肖海, 曾向东, 赵晓昱. 导电水凝胶材料研究进展及在超级电容器的应用[J]. 材料导报, 2024, 38(19): 23060125-8.
[8] 付华, 陈慧媛, 宋维君, 赵云. 一种新型的用于萃取铷的冠醚功能化磁性固相纳米材料[J]. 材料导报, 2024, 38(17): 22070038-6.
[9] 龙娟, 李宇展, 李志强, 钟土华. 纳米纤维素的点击反应改性及应用研究进展[J]. 材料导报, 2024, 38(17): 23050159-10.
[10] 潘二才, 姜志超, 黄嘉辉, 马玉荣. 通过仿生矿化修复人体牙齿结构[J]. 材料导报, 2024, 38(15): 23030040-13.
[11] 王梓霄, 熊良涛, 李浩源. 共价有机框架材料的热导和热电应用研究进展[J]. 材料导报, 2024, 38(12): 24040129-8.
[12] 戴瑛凡, 杨瑞昊, 吕权杰, 李晗寅, 陶可. 无机纳米材料用于声动力治疗的研究进展[J]. 材料导报, 2024, 38(1): 22110085-6.
[13] 夏鹏, 傅萍, 黄金华, 李佳, 宋伟杰. 硅异质结太阳能电池用透明导电氧化物薄膜的研究现状及发展趋势[J]. 材料导报, 2023, 37(9): 22090082-9.
[14] 曹哲勇, 刘兴华, 郑静霞, 杨永珍, 刘旭光. 非线性光学碳点的调控及应用研究进展[J]. 材料导报, 2023, 37(7): 21060197-10.
[15] 孙墨杰, 王洋, 刘建军, 张士元, 周静, 张庭. 微流控系统制备金属纳米催化剂研究进展[J]. 材料导报, 2023, 37(7): 21040293-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed