Abstract: Nanomaterials exhibit excellent properties in optical, thermal, electrical, magnetic and mechanical properties. It has been widely used in hydrogen storage, catalysis, solar cells, microelectronic packaging, biomedical and other fields. Spark discharge method is an effective means to prepare nanoparticles with wide applicability, high purity, simple operation process, flexible method, and friendly to the environment. This paper outlines the basic components of the spark discharge generator and the principles of the spark discharge process, analyzes in detail the formation mechanism of nanoparticles as well as the key factors affecting the size and production of nanoparticles. In addition, it lists the diversity of prepared nanomaterials, and reviews the excellent properties of nanomaterials prepared by this technique in many fields. Finally, we make an outlook on the development of nanomaterials prepared by spark discharge and their application areas.
作者简介: 张昱,广东工业大学省部共建精密电子制造技术与装备国家重点实验室成员,副教授、硕士研究生导师。2016年1月于中国科学院大学获得理学博士学位,毕业后到广东工业大学工作至今。目前主要从事微纳金属材料、电子封装材料与工艺等方面的研究工作,已授权中国发明专利50余件,发表SCI论文20余篇,包括ACS Applied Materials & Interfaces、Nanoscale、Journal of Materials Chemistry A、Ultrasonics Sonochemistry 、Journal of Alloys and Compounds、Biomaterials Science、Nanotechnology等。
引用本文:
张昱, 梁沛林, 何钧宇, 杨冠南, 崔成强. 火花放电法制备纳米材料及其应用综述[J]. 材料导报, 2024, 38(7): 22080233-9.
ZHANG Yu, LIANG Peilin, HE Junyu, YANG Guannan, CUI Chengqiang. Review on Preparation of Nanomaterials by Spark Discharge Method and Its Application. Materials Reports, 2024, 38(7): 22080233-9.
1 Zhang H. ACS Nano, 2015, 9(10), 9451. 2 Martin C R. Science, 1994, 266(5193), 1961. 3 Kelly K L, Coronado E, Zhao L L, et al. Journal of Physical Chemistry B, 2003, 107(3), 668. 4 Anastasopol A, Pfeiffer T V, Middelkoop J, et al. Journal of the American Chemical Society, 2013, 135(21), 7891. 5 Nafiu S A, Shah S S, Aziz A. Chemistry—An Asian Journal, 2021, 16(14), 1956. 6 Shaky M M, Chowdhury M H. Applied Optics, 2021, 60(17), 5094. 7 Wang S, Li M Y, Ji H J, et al. Scripta Materialia, 2013, 69(11), 789. 8 Naskar A, Kim K S. Pharmaceutics, 2021, 13(1), 86. 9 Li J, Shi T, Feng C, et al. Materials Letters, 2017, 216, 20. 10 Chia-Chang L, Jun-Hong L, Kuan-Yi W. Ceramics International, 2023, 49(2), 1874. 11 Li S M, Liu H, Yu S S, et al. China Powder Science and Technology, 2013, 19(6), 49 (in Chinese). 李双明, 刘慧, 于三三, 等. 中国粉体技术, 2013, 19(6), 49. 12 Alireza S, Farid M. Polymer Composites, 2022, 43(3), 1282. 13 Xie Z Y, Xu J S. Lubrication Engineering, 2006(3), 126 (in Chinese). 谢中亚, 徐建生. 润滑与密封, 2006(3), 126. 14 Chen X, Zhang Z Z, Zhao F X, et al. Foundry Technology, 2011, 32(4), 527 (in Chinese). 陈西, 张振忠, 赵芳霞. 铸造技术, 2011, 32(4), 527. 15 Pfeiffer T V, Feng J, Schmidt-Ott A. Advanced Powder Technology, 2014, 25(1), 56. 16 Vasiliev A A, Varfolomeev A E, Volkov I A, et al. Sensors (Basel, Switzerland), 2019, 18(8), 2600. 17 Vons V A, Leegwater H, Legerstee W J, et al. International Journal of Hydrogen Energy, 2010, 35(11), 5479. 18 Lu J, Guo J, Song S, et al. RSC Advances, 2020, 10(63), 38583. 19 Kourmouli A, Valenti M, Rign E,et al. Journal of Nanoparticle Research, 2018, 20(3), 62. 20 Meuller B O, Messing M E, Engberg D L J, et al. Aerosol Science and Technology, 2012, 46(11), 1256. 21 Schwyn S, Garwin E, Schmidt-Ott A. Journal of Aerosol Science, 1988, 19(5), 639. 22 Peineke C, Davoodi P, Seipenbusch M. Journal of Nanoscience & Nanotechnology, 2011, 11(10), 8628. 23 Isaac N, Valenti M, Schmidt-Ott A, et al. ACS Applied Materials & Interfaces, 2016, 8(6), 3933. 24 Ha K, Jang E, Jang S, et al. Nanotechnology, 2016, 27(5), 055403. 25 Vons V A. Spark discharge generated nanoparticles for hydrogen storage applications. Ph. D. Thesis, Delft University of Technology, Netherland, 2010. 26 Petr R A, Burkes T R. Applied Physics Letters, 1980, 36(7), 536. 27 Reinmann R, Akram M. Journal of Applied Physics, 1997, 30(7), 1125. 28 Naidu M S, Kamaraju V. IEEE Power Engineering Review, 1995, 15, 36. 29 Walters J P, Malmstadt H V. Analytical Chemistry, 1965, 37(12), 1484. 30 Raizer Y P. In: Gas discharge physics, Springer Berlin Press, Russian, 1991, pp. 140. 31 Palomares J M, Kohut A, Galbács G, et al. Journal of Applied Physics, 2015, 118(23), 56. 32 Persephonis P, Vlachos K, Georgiades C, et al. Journal of Applied Phy-sics, 1992, 71(10), 4755. 33 Harrison M A. Physical Review, 1957, 105(2), 366. 34 Tabrizi N S, Ullmann M, Vons V A, et al. Journal of Nanoparticle Research, 2008, 11(2), 315. 35 Lethtinen K E J, Zachariah M R. Journal of Aerosol Science, 2002, 33(2), 357. 36 Andreas S O. Spark ablation-building blocks for nanotechnology, Jenny Stanford Publishing, Singapore, 2020, pp. 56. 37 Byeon J H, Park J H, Hwang J. Journal of Aerosol Science, 2008, 39(10), 888. 38 Tabrizi N S, Xu Q, van der Pers N M. Journal of Nanoparticle Research, 2009, 11(5), 1209. 39 Lafont U, Simonin L, Tabrizi N S, et al. Journal of Nanoscience & Nanotechnology, 2009, 9(4), 2546. 40 Tabrizi N S, Xu Q, van der Pers N M. Journal of Nanoparticle Research, 2010, 12(1), 247. 41 Evans D E, Harrison R M, Ayres J G. Aerosol Science & Technology, 2003, 37(12), 975. 42 Feng J, Geutjens R, Thang N, et al. ACS Applied Materials & Interfaces, 2018, 10(7), 6073. 43 Vons V A, Anastasopol A, Legerstee W J, et al. Acta Materialia, 2011, 59(8), 3070. 44 Anastasopol A, Pfeiffer T V, Schmidt-Ott A, et al. Applied Physics Letters, 2011, 99(19), 217. 45 Pfeiffer T, Kedia P, Messing M, et al. Materials, 2015, 8(3), 1027. 46 Gulijk C V, Bal E, Schmidt-Ott A. Journal of Aerosol Science, 2009, 40(4), 362. 47 Abd El-Aal M, Seto T. Surface and Interface Analysis, 2021, 53(9), 824. 48 Winai T, Tewasin K, Ekkapong K, et al. Materials Letters, 2021, 311, 131591. 49 Vincent A, Lcpmd S, David M, et al. Journal of Nanoparticle Research, 2011, 13(10), 4867. 50 Ning D, Jing X, Yaxuan Y, et al. Journal of Power Sources, 2009, 192(2), 644. 51 Janot R, Cuevas F, Latroche M, et al. Intermetallics, 2006, 14(2), 163. 52 Sarmishtha G, Debasis M, Sudip R, et al. Sensors & Transducers Journal, 2010, 113(2), 1. 53 Shiyang L, Xiangfeng H, Zhengyu W, et al. Chemical Engineering Journal, 2020, 388, 124373. 54 Jicheng F, Esther H, Maria B, et al. ACS Applied Materials & Interfaces, 2016, 8(23), 14756. 55 Braams F P. A clean and flexible catalyst synthesis method: metal nano-particles on a fractal-like nanostructured metal oxide support. Ph. D. Thesis, Delft University of Technology, Netherland, 2015. 56 Isaac N, Valenti M, Schmidt-Ott A, et al. ACS Applied Materials & Interfaces, 2016, 8(6), 3933. 57 Isaac N A, Ngene P, Westerwaal R J, et al. Sensors & Actuators B Chemical, 2015, 221(DEC. ), 290. 58 Aae A, Gnp B, Avn B, et al. Results in Physics, 2017, 7, 440. 59 Efimov A A, Arsenov P V, Protas N V, et al. In: International Confe-rence on Mechanical Engineering and Applied Composite Materials, Hong Kong, China, 2018, pp. 012082. 60 Alexey A E, Denis V K, Arseny I B, et al. Applied Sciences, 2021, 11(13), 5791. 61 Methling R P, Senz V, Klinkenberg E D, et al. European Physical Journal D, 2001, 16(1), 173. 62 Zonnevylle A C, Hagen C W, Kruit P, et al. Microelectronic Enginee-ring, 2009, 86(4), 803.