Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23070073-4    https://doi.org/10.11896/cldb.23070073
  无机非金属及其复合材料 |
基于丁二胺盐酸盐钝化的高效钙钛矿/晶硅叠层电池
何永才1,2, 丁蕾2, 杨莹2, 刘江2, 何博2, 张永哲1, 严辉1,*, 徐希翔2
1 北京工业大学材料与制造学部,北京 100124
2 隆基绿能科技股份有限公司隆基中央研究院,西安 710100
High Performance Perovskite/Silicon Tandem Solar Cells Based on 1, 4-Diaminobutane Dihydrochloride
HE Yongcai1,2, DING Lei2, YANG Ying2, LIU Jiang2, HE Bo2, ZHANG Yongzhe1, YAN Hui1,*, XU Xixiang2
1 The Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
2 LONGi Central Research and Development Institute, LONGi Green Energy Technology Co., Ltd., Xi’an 710100, China
下载:  全 文 ( PDF ) ( 2707KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钙钛矿/硅异质结叠层电池技术是突破晶体硅太阳电池极限效率的重要途径。在叠层电池中,多晶钙钛矿膜层内缺陷中心将诱导光生载流子复合损失,因而对钙钛矿膜层内缺陷进行钝化是提升叠层电池光电转换效率的有效策略。本工作采用在钙钛矿前驱体内掺入1,4-丁二胺盐酸盐的方法,通过引入氯离子实现结晶调控提高钙钛矿结晶质量,同时发现丁二胺阳离子对钙钛矿膜层缺陷中心显示出良好的钝化效果,两者协同作用显著提升叠层电池的开路电压(Voc)和填充因子(FF),并最终成功获得了28.77%的NREL认证效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何永才
丁蕾
杨莹
刘江
何博
张永哲
严辉
徐希翔
关键词:  1,4-丁二胺盐酸盐  缺陷钝化  钙钛矿  叠层电池    
Abstract: Perovskite/silicon heterojunction tandem solar cell has been regarded as a promising strategy to break the inherent Shockley-Queisser limit imposed on single-junction solar cells. However, the existence of defects within the multi-crystalline perovskite active layer would form additional recombination centers for photo-generated carriers, and bring about unfavorable losses to the performance of solar cells. Therefore, it is both necessary and significant to explore effective passivation approaches. In this work, we adopt 1, 4-diaminobutane dihydrochloride by mixing it into the perovskite precursor and found this could optimize the performance of monolithic perovskite/silicon tandem solar cells. Ultimately, the synergistic effects contributed by the component chloride ion and diaminobutane of 1, 4-diaminobutane dihydrochloride improve both the open-circuit voltage and fill factor, and this help us to achieve a certified PCE of 28.77% by NREL.
Key words:  1, 4-diaminobutane dihydrochloride    defect passivation    perovskite    tandem solar cell
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  TK514  
基金资助: 国家自然科学基金(62034001)
通讯作者:  * 严辉,北京工业大学材料科学与工程学院教授、博士研究生导师。目前主要从事新型电子材料、高效光伏材料及器件等方面的研究工作,在Nature Energy、Nature Communications、Advanced Materials、Advanced Energy Materials、Small、Solar Energy等学术期刊发表论文1 000余篇。hyan@bjut.edu.cn   
作者简介:  何永才,2015年6月、2018年6月分别于西华大学和北京工业大学获得工学学士学位和硕士学位。现为北京工业大学信息科学与工程学院博士研究生,在严辉教授的指导下进行研究。目前主要研究领域为高效光伏器件结构及材料研究。
引用本文:    
何永才, 丁蕾, 杨莹, 刘江, 何博, 张永哲, 严辉, 徐希翔. 基于丁二胺盐酸盐钝化的高效钙钛矿/晶硅叠层电池[J]. 材料导报, 2024, 38(20): 23070073-4.
HE Yongcai, DING Lei, YANG Ying, LIU Jiang, HE Bo, ZHANG Yongzhe, YAN Hui, XU Xixiang. High Performance Perovskite/Silicon Tandem Solar Cells Based on 1, 4-Diaminobutane Dihydrochloride. Materials Reports, 2024, 38(20): 23070073-4.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070073  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23070073
1 Wong T K, Pei K. Photonics, 2022, 9(4), 477.
2 Lin H, Yang M, Ru X N, et al. Nature Energy, 2023, 2(5), 1.
3 Andreani L C, Bozzola A, Kowalczewski P, et al. Advances in Physics: X, 2019, 4(1), 1548305.
4 Li H, Zhang W. Chemical Reviews, 2020, 120(18), 9835.
5 Li J, Alvianto E, Hou Y. ACS Applied Materials Interfaces, 2022, 14(30), 34262.
6 Fu F, Li J, Yang T C, et al. Advanced Materials, 2022, 34(24), 2106540.
7 Tockhorn P, Sutter J, Cruz A, et al. Nature Nanotechnology, 2022, 17, 1214.
8 Jošt M, Kegelmann L, Korte L, et al. Advanced Energy Materials, 2020, 10(26), 1904102.
9 Mariotti S, Kohnen E, Scheler F, et al. Science, 2023, 381, 63.
10 Zhou X, Qi W J, Li J L, et al. Solar RRL, 2020, 4(10), 2000308.
11 Huang L, Zhang D, Bu S X, et al. Advanced Science, 2020, 7(6), 1902656.
12 He Y C, Tang Z G, Mao L, et al. Physica Status Solidi(RRL)-Rapid Research Letters, 2021, 15(12), 2100119.
13 Xu J, Boyd C C, Yu Z J, et al. Science, 2020, 367(6482), 1097.
14 Lang F, Köhnen E, Warby J, et al. ACS Energy Letters, 2021, 6(11), 3982.
15 Min H, Kim M, Lee S, et al. Science, 2019, 366(6466), 749.
16 Zhu H, Liu Y H, Eickemeyer F T, et al. Advanced Materials, 2020, 32(12), 1907757.
17 Al-Ashouri A, Khnen E, Li B, et al. Science, 2020, 370(6522), 1300.
18 Sahli F, Werner J, Kamino B A, et al. Nature Materials, 2018, 17(9), 820.
19 Stone K H, Gold-Parker A, Pool V L, et al. Nature Communications, 2018, 9(1), 3458.
20 Unger E L, Bowring A R, Tassone C J, et al. Chemistry of Materials, 2014, 26(24), 7158.
21 Colella S, Mosconi E, Fedeli P, et al. Chemistry of Materials, 2013, 25(22), 4613.
22 Tailor N K, Abdi-Jalebi M, Gupta V, et al. Journal of Materials Chemistry A, 2020, 8(41), 21356.
23 Jiang Q, Zhang L Q, Wang H L, et al. Nature Energy, 2016, 2(1), 1.
[1] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[2] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[3] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[4] 孙元杰, 李志刚, 王艺, 田波, 李金凤, 张楠, 赵浚峰, 张建伟, 李拓, 赵弘韬. 金属卤化物钙钛矿纳米晶体/聚合物复合材料的研究进展[J]. 材料导报, 2024, 38(15): 23040056-10.
[5] 高华兴, 张红旗, 李璇. 准二维钙钛矿中结晶调控与低阈值微纳激光器[J]. 材料导报, 2024, 38(12): 22110309-5.
[6] 梁梦标, 陈婷, 秦喆, 谢志翔, 徐彦乔, 温鹏, 林坚, 郭春显. 全无机铯铅卤钙钛矿纳米晶的表面包覆策略及白光LED应用研究进展[J]. 材料导报, 2024, 38(11): 22120172-11.
[7] 何敬敬, 王旭, 牛强. 钙钛矿量子点在光伏电池中的应用进展[J]. 材料导报, 2024, 38(10): 22110228-13.
[8] 王耀武, 王彬彬. 有机电子传输材料在反式钙钛矿太阳能电池中的研究现状[J]. 材料导报, 2024, 38(10): 22100210-11.
[9] 魏宇, 姜丰, 张雯. 钙钛矿基气敏传感材料研究进展[J]. 材料导报, 2023, 37(9): 21060043-9.
[10] 楚丙凯, 刘璐璐, 郝继功, 李伟, 曾华荣. BNT基铁电陶瓷的温度诱导高电致应变响应及其机理研究[J]. 材料导报, 2023, 37(7): 21100234-6.
[11] 金胜利, 寿春晖, 黄绵吉, 贺海晏, 李聪. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201-13.
[12] 余海燕, 许方贤, 张帅, 袁宁一, 丁建宁. 一种低温退火处理提高锡基钙钛矿太阳能电池效率的方法[J]. 材料导报, 2023, 37(23): 23020020-5.
[13] 才文文, 贺勇, 张敏, 史俊杰. AZrX3(A=Ba, Ca;X=S, Se,Te)钙钛矿结构及光电特性的第一性原理研究[J]. 材料导报, 2023, 37(2): 21070076-6.
[14] 高培养, 范学运, 李家科, 郭平春, 黄丽群, 孙健, 朱华, 王艳香. SnO2基钙钛矿太阳能电池的发展[J]. 材料导报, 2022, 36(8): 20060037-12.
[15] 曾奕瑾, 宗朔通. 第一性原理在钙钛矿中的应用研究进展[J]. 材料导报, 2022, 36(8): 20080229-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed