Influence of Different Substituents on Photoelectric Properties of Biphenyl Imide Group Hole Transport Materials
ZHENG Huiwen1, JIN Hongzhang1, XU Yan1, YAN Lei1,*, WANG Xingzhu2,*
1 School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, Hunan, China 2 School of Electrical Engineering, University of South China, Hengyang 421001, Hunan, China
Abstract: In this study, we designed four new hole transport materials (HTMs) in perovskite solar cells (PSCs) and studied the effects of the different substituent groups on their performance. Based on density functional theory (DFT), we investigated the geometry, frontier molecular orbi-tals (FMOs), density of states (DOS), solvation free energy (ΔGsol), absolute hardness, electrostatic potential (ESP), and hole transport rates of all designed molecules. Time-dependent density functional theory (TD-DFT) was used to analyze the absorption spectra, charge density difference diagrams (CDD), heat maps, D index, H index, Sr index, exciton binding energy (Ecoul), and the electron transfer of the designed HTMs. The simulation findings demonstrate that the studied HTMs molecular energy levels match the energy level of perovskite (MAPbI3). Additionally, all designed molecules have good stability and high hole transport rates. Based on the solubility free energies, the designed HTMs were all found to be soluble in the dichloromethane solvent. The UV-visible absorption spectra show that the designed HTMs can broaden the optical absorption range of PSCs in the visible light region. In addition, the photoexcitation process is the transfer of electrons from the donor to the receptor. The designed molecules exhibit great electronic character, optical character, hole transport rates, and stability, which provide ideas for the future design of high-efficiency HTMs.
郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
ZHENG Huiwen, JIN Hongzhang, XU Yan, YAN Lei, WANG Xingzhu. Influence of Different Substituents on Photoelectric Properties of Biphenyl Imide Group Hole Transport Materials. Materials Reports, 2024, 38(8): 22120082-8.
1 Ansari M I H, Qurashi A, Nazeeruddin M K. Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 2018, 35, 1. 2 Darling S B, You F, Veselka T, et al. Energy & Environmental Science, 2011, 4(9), 3133. 3 Kayesh M E, Matsuishi K, Kaneko R, et al. ACS Energy Letters, 2019, 4(1), 278. 4 Kim G, Min H, Su Lee K, et al. Science, 2020, 370, 108. 5 Kojima A, Teshima K, Shirai Y, et al. Journal of the American Chemical Society, 2009, 131(17), 6050. 6 Wu T, Zhuang R, Zhao R, et al. ACS Energy Letters, 2021, 6, 2218. 7 Kim H S, Lee C R, Im J H, et al. Scientific Reports, 2012, 2, 1. 8 Lamberti F, Gatti T, Cescon E, et al. Chem, 2019, 5(7), 1806. 9 Ulfa M, Zhu T, Goubard F, et al. Journal of Materials Chemistry A, 2018, 6(27), 13350. 10 Zhang J, Xu B, Johansson M B, et al. ACS Nano, 2016, 10(7), 6816. 11 Liu X, Ma S, Ding Y, et al. Solar RRL, 2019, 3(5), 1800337. 12 Xu B, Sheibani E, Liu P, et al. Advanced Materials, 2014, 26(38), 6629. 13 Steck C, Franckevičius M, Zakeeruddin S M, et al. Journal of Mate-rials Chemistry A, 2015, 3(34), 17738. 14 You G, Zhuang Q, Wang L, et al. Advanced Energy Materials, 2020, 10(5), 1903146. 15 Kim G W, Kim J, Lee G Y, et al. Advanced Energy Materials, 2015, 5(14), 1500471. 16 Liu H, Chen Q, Wu F, et al. Journal of Physical Chemistry C, 2022, 126(1), 160. 17 Maddala G, Gade R, Ahemed J, et al. Solar Energy, 2021, 226, 501. 18 Liu L, Wu Y, Li M, et al. Chemical Communications, 2018, 54(99), 14025. 19 Connell A, Wang Z, Lin Y H, et al. Journal of Materials Chemistry C, 2019, 7(18), 5235. 20 Cheng H, Zhao X, Shen Y, et al. Journal of Energy Chemistry, 2018, 27(4), 1175. 21 Ding X, Chen C, Sun L, et al. Journal of Materials Chemistry A, 2019, 7(16), 9510. 22 Salunke J, Guo X, Lin Z, et al. ACS Applied Energy Materials, 2019, 2(5), 3021. 23 Wang Z, Zhang B, Zhang Y, et al. RSC Advances, 2020, 10(52), 31049. 24 Wang Z, Zhu X, Zhang S, et al. Advanced Optical Materials, 2021, 9(5), 1. 25 Gaussian09 R A. 1, mj frisch, gw trucks, hb schlegel, ge scuseria, ma robb, jr cheeseman, g. Scalmani, v. Barone, b. Mennucci, ga petersson et al. gaussian. Inc. Wallingford CT, 2009, 121, 150. 26 Humphrey W, Dalke A, Schulten K. Journal of Molecular Graphics, 1996, 14, 33. 27 Lu T, Chen F. Journal of Computational Chemistry, 2012, 33(5), 580. 28 Zhao D, Saputra R M, Song P, et al. Solar Energy, 2020, 201, 872. 29 Liu X, Wang K, Liu R, et al. Dyes and Pigments, 2022, 204, 110452. 30 Afraj S N, Zheng D, Velusamy A, et al. ACS Energy Letters, 2022, 7(6), 2118. 31 Cai B, Xing Y, Yang Z, et al. Energy & Environmental Science, 2013, 6(5), 1480. 32 Liu H, Cheng P, Chen Q, et al. Journal of Electronic Materials, 2022, 51, 1778. 33 Hussain R, Saeed M, Mehboob M Y, et al. RSC Advances, 2020, 10(35), 20595. 34 Bilal Ahmed Siddique M, Hussain R, Ali Siddique S, et al. Chemistry Select, 2020, 5(25), 7358. 35 Khan M U, Mehboob M Y, Hussain R, et al. Journal of Physical Orga-nic Chemistry, 2021, 34(1), 1. 36 Mehboob M Y, Adnan M, Hussain R, et al. Optical and Quantum Electronics, 2021, 53(9), 517. 37 Vatanparast M, Shariatinia Z. Solar Energy, 2021, 230, 260. 38 Marcus R A. Angewandte Chemie International Edition in English, 1993, 32(8), 1111. 39 Cornil J, Brédas J L, Zaumseil J, et al. Advanced Materials, 2007, 19(14), 1791. 40 Coropceanu V, Cornil J, Da Silva Filho D A, et al. Chemical Reviews, 2007, 107(4), 926. 41 Backer S A, Sivula K, Kavulak D F, et al. Chemistry of Materials, 2007, 19(12), 2927. 42 Seri M, Marrocchi A, Bagnis D, et al. Advanced Materials, 2011, 23(33), 3827. 43 Lu T. Section 3. 21. 1 of Multiwfn manual ver 3. 8(dev), http://sobereva.com/multiwfn.