Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 22120082-8    https://doi.org/10.11896/cldb.22120082
  高分子与聚合物基复合材料 |
不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响
郑惠文1, 金宏璋1, 徐炎1, 闫磊1,*, 王行柱2,*
1 湘潭大学物理与光电工程学院,湖南 湘潭 411105
2 南华大学电气工程学院,湖南 衡阳 421001
Influence of Different Substituents on Photoelectric Properties of Biphenyl Imide Group Hole Transport Materials
ZHENG Huiwen1, JIN Hongzhang1, XU Yan1, YAN Lei1,*, WANG Xingzhu2,*
1 School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, Hunan, China
2 School of Electrical Engineering, University of South China, Hengyang 421001, Hunan, China
下载:  全 文 ( PDF ) ( 13427KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作设计了四种以联苯二酰亚胺为核心的新型空穴传输材料(HTMs),并且分别研究了含H、OH、OMe和NH2取代基对其性能的影响。基于密度泛函理论(DFT),讨论了所设计的分子的几何结构、前线分子轨道(FMOs)、HOMO-LUMO能级能隙、态密度(DOS)、绝对硬度、静电势(ESP)以及空穴传输速率。基于含时密度泛函理论(TD-DFT),讨论了空穴传输材料分子的吸收光谱、电荷密度差图(CDD)、热图、D指数、H指数、Sr指数、激子结合能(Ecoul)以及片段间的电子转移量。模拟计算结果表明:设计的HTMs的能级都与钙钛矿层(MAPbI3)的能级匹配,并且都具有较高的稳定性和空穴传输速率。根据溶解自由能的研究结表明:设计的分子均可溶于二氯甲烷溶剂中。所有的分子在200~400 nm之间有较为明显的吸收峰,不会与钙钛矿层在可见光区域发生光吸收竞争,并且光激发过程电子是从给体转移到受体;所设计的HTMs具有良好的电学性质、光学性质、空穴传输速率和稳定性,该研究为高效性能的空穴传输材料的设计提供了新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑惠文
金宏璋
徐炎
闫磊
王行柱
关键词:  密度泛函理论  空穴传输材料  钙钛矿太阳能电池  联苯二酰亚胺    
Abstract: In this study, we designed four new hole transport materials (HTMs) in perovskite solar cells (PSCs) and studied the effects of the different substituent groups on their performance. Based on density functional theory (DFT), we investigated the geometry, frontier molecular orbi-tals (FMOs), density of states (DOS), solvation free energy (ΔGsol), absolute hardness, electrostatic potential (ESP), and hole transport rates of all designed molecules. Time-dependent density functional theory (TD-DFT) was used to analyze the absorption spectra, charge density difference diagrams (CDD), heat maps, D index, H index, Sr index, exciton binding energy (Ecoul), and the electron transfer of the designed HTMs. The simulation findings demonstrate that the studied HTMs molecular energy levels match the energy level of perovskite (MAPbI3). Additionally, all designed molecules have good stability and high hole transport rates. Based on the solubility free energies, the designed HTMs were all found to be soluble in the dichloromethane solvent. The UV-visible absorption spectra show that the designed HTMs can broaden the optical absorption range of PSCs in the visible light region. In addition, the photoexcitation process is the transfer of electrons from the donor to the receptor. The designed molecules exhibit great electronic character, optical character, hole transport rates, and stability, which provide ideas for the future design of high-efficiency HTMs.
Key words:  density functional theory    hole transport materials    perovskite solar cells    diphenyl imide
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  O604  
基金资助: 科技部国家重点研发计划项目(2021YFE0191500);湖南省自然科学基金面上项目(2023JJ50132)
通讯作者:  *闫磊,湘潭大学物理与光电工程学院副教授、硕士研究生导师。2002年以来,一直从事新型光电功能材料的构效关系与器件物理研究(包括有机太阳能电池、钙钛矿太阳能电池、染料敏化太阳能电池、高效晶硅太阳能电池、晶体场效应管、热电器件等)。在学术期刊发表SCI论文30余篇,申请发明专利5项。承担项目包括国家重点研发计划项目、国家自然科学基金项目、湖南省自然科学基金项目、湖南省教育厅基金项目等十余项。yanlei@xtu.edu.cn
王行柱,教授,博士研究生导师。于2009年获得香港浸会大学博士学位,随后在剑桥大学进行博士后研究,于2011年至2017年先后加入南洋理工大学和新加坡国立大学,担任研究员和高级研究员,2018—2023年在南方科技大学担任教授,目前在南华大学任领军教授,入选国家级高层次人才和湖南省科技创新领军人才。王行柱教授主要研究方向为有机功能材料的设计与合成、有机半导体材料开发和光电子器件研究,迄今已在Science、Nat.Mater.、J.Am.Chem.Joc.、Adv.Mater.、Adv.Energy Mater.、ACS Energy Letters.、Adv.Funct.Mater.、ACS Nano、Chem.Sci.等国际权威杂志上发表SCI论文152篇,授权专利22项。wangxz@pt-solar.cn   
作者简介:  郑惠文,2019年6月于湘潭大学物理与光电工程学院获得工学学士学位。现为湘潭大学物理与光电工程学院硕士研究生,在闫磊教授的指导下进行研究。目前主要研究领域为钙钛矿太阳能电池空穴传输层材料。
引用本文:    
郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
ZHENG Huiwen, JIN Hongzhang, XU Yan, YAN Lei, WANG Xingzhu. Influence of Different Substituents on Photoelectric Properties of Biphenyl Imide Group Hole Transport Materials. Materials Reports, 2024, 38(8): 22120082-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22120082  或          https://www.mater-rep.com/CN/Y2024/V38/I8/22120082
1 Ansari M I H, Qurashi A, Nazeeruddin M K. Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 2018, 35, 1.
2 Darling S B, You F, Veselka T, et al. Energy & Environmental Science, 2011, 4(9), 3133.
3 Kayesh M E, Matsuishi K, Kaneko R, et al. ACS Energy Letters, 2019, 4(1), 278.
4 Kim G, Min H, Su Lee K, et al. Science, 2020, 370, 108.
5 Kojima A, Teshima K, Shirai Y, et al. Journal of the American Chemical Society, 2009, 131(17), 6050.
6 Wu T, Zhuang R, Zhao R, et al. ACS Energy Letters, 2021, 6, 2218.
7 Kim H S, Lee C R, Im J H, et al. Scientific Reports, 2012, 2, 1.
8 Lamberti F, Gatti T, Cescon E, et al. Chem, 2019, 5(7), 1806.
9 Ulfa M, Zhu T, Goubard F, et al. Journal of Materials Chemistry A, 2018, 6(27), 13350.
10 Zhang J, Xu B, Johansson M B, et al. ACS Nano, 2016, 10(7), 6816.
11 Liu X, Ma S, Ding Y, et al. Solar RRL, 2019, 3(5), 1800337.
12 Xu B, Sheibani E, Liu P, et al. Advanced Materials, 2014, 26(38), 6629.
13 Steck C, Franckevičius M, Zakeeruddin S M, et al. Journal of Mate-rials Chemistry A, 2015, 3(34), 17738.
14 You G, Zhuang Q, Wang L, et al. Advanced Energy Materials, 2020, 10(5), 1903146.
15 Kim G W, Kim J, Lee G Y, et al. Advanced Energy Materials, 2015, 5(14), 1500471.
16 Liu H, Chen Q, Wu F, et al. Journal of Physical Chemistry C, 2022, 126(1), 160.
17 Maddala G, Gade R, Ahemed J, et al. Solar Energy, 2021, 226, 501.
18 Liu L, Wu Y, Li M, et al. Chemical Communications, 2018, 54(99), 14025.
19 Connell A, Wang Z, Lin Y H, et al. Journal of Materials Chemistry C, 2019, 7(18), 5235.
20 Cheng H, Zhao X, Shen Y, et al. Journal of Energy Chemistry, 2018, 27(4), 1175.
21 Ding X, Chen C, Sun L, et al. Journal of Materials Chemistry A, 2019, 7(16), 9510.
22 Salunke J, Guo X, Lin Z, et al. ACS Applied Energy Materials, 2019, 2(5), 3021.
23 Wang Z, Zhang B, Zhang Y, et al. RSC Advances, 2020, 10(52), 31049.
24 Wang Z, Zhu X, Zhang S, et al. Advanced Optical Materials, 2021, 9(5), 1.
25 Gaussian09 R A. 1, mj frisch, gw trucks, hb schlegel, ge scuseria, ma robb, jr cheeseman, g. Scalmani, v. Barone, b. Mennucci, ga petersson et al. gaussian. Inc. Wallingford CT, 2009, 121, 150.
26 Humphrey W, Dalke A, Schulten K. Journal of Molecular Graphics, 1996, 14, 33.
27 Lu T, Chen F. Journal of Computational Chemistry, 2012, 33(5), 580.
28 Zhao D, Saputra R M, Song P, et al. Solar Energy, 2020, 201, 872.
29 Liu X, Wang K, Liu R, et al. Dyes and Pigments, 2022, 204, 110452.
30 Afraj S N, Zheng D, Velusamy A, et al. ACS Energy Letters, 2022, 7(6), 2118.
31 Cai B, Xing Y, Yang Z, et al. Energy & Environmental Science, 2013, 6(5), 1480.
32 Liu H, Cheng P, Chen Q, et al. Journal of Electronic Materials, 2022, 51, 1778.
33 Hussain R, Saeed M, Mehboob M Y, et al. RSC Advances, 2020, 10(35), 20595.
34 Bilal Ahmed Siddique M, Hussain R, Ali Siddique S, et al. Chemistry Select, 2020, 5(25), 7358.
35 Khan M U, Mehboob M Y, Hussain R, et al. Journal of Physical Orga-nic Chemistry, 2021, 34(1), 1.
36 Mehboob M Y, Adnan M, Hussain R, et al. Optical and Quantum Electronics, 2021, 53(9), 517.
37 Vatanparast M, Shariatinia Z. Solar Energy, 2021, 230, 260.
38 Marcus R A. Angewandte Chemie International Edition in English, 1993, 32(8), 1111.
39 Cornil J, Brédas J L, Zaumseil J, et al. Advanced Materials, 2007, 19(14), 1791.
40 Coropceanu V, Cornil J, Da Silva Filho D A, et al. Chemical Reviews, 2007, 107(4), 926.
41 Backer S A, Sivula K, Kavulak D F, et al. Chemistry of Materials, 2007, 19(12), 2927.
42 Seri M, Marrocchi A, Bagnis D, et al. Advanced Materials, 2011, 23(33), 3827.
43 Lu T. Section 3. 21. 1 of Multiwfn manual ver 3. 8(dev), http://sobereva.com/multiwfn.
[1] 赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
[2] 李歌, 马子然, 闾菲, 彭胜攀, 佟振伟. 基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展[J]. 材料导报, 2025, 39(1): 23110048-13.
[3] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[4] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[5] 李亚莎, 郭玉杰, 夏宇, 王佳敏, 晏欣悦, 陈俊璋. 外电场下三元乙丙橡胶微观特性及其对沿面放电影响的研究[J]. 材料导报, 2024, 38(23): 23070060-8.
[6] 赵登婕, 李康宁, 胡李纳, 闫彤, 杨艳坤, 郝阳, 张晨曦, 郝玉英. 氧化锡电子传输层在正置钙钛矿太阳能电池中的研究进展[J]. 材料导报, 2024, 38(21): 23040102-11.
[7] 王耀武, 王彬彬. 有机电子传输材料在反式钙钛矿太阳能电池中的研究现状[J]. 材料导报, 2024, 38(10): 22100210-11.
[8] 李天宇, 柴肇云, 杨泽前, 辛子朋, 孙浩程, 闫珂. 高岭石表面水化机理及电场弱化其吸附性能的分子模拟[J]. 材料导报, 2024, 38(1): 22050283-7.
[9] 郭静, 宋旭锋, 于艳敏, 高倩倩. 铁卟啉催化氧化邻、对硝基取代芳烃α-C-H键的密度泛函理论研究[J]. 材料导报, 2023, 37(8): 21110223-6.
[10] 宋丽红, 张敏刚, 曹翔宇, 郭锦, 闫晓燕. S-N掺杂聚乙二醇用于锂硫电池的第一性原理研究[J]. 材料导报, 2023, 37(3): 21030173-5.
[11] 高培养, 范学运, 李家科, 郭平春, 黄丽群, 孙健, 朱华, 王艳香. SnO2基钙钛矿太阳能电池的发展[J]. 材料导报, 2022, 36(8): 20060037-12.
[12] 黄韬博, 谢成瀚, 李璠, 王奕沣, 刘文. 花状二维氮化碳在模拟太阳光下光催化降解水中磺胺氯哒嗪机理研究[J]. 材料导报, 2022, 36(20): 21120162-6.
[13] 张尧, 毕恩兵, 茹鹏斌, 陈汉. 一种咪唑基离子液体钝化制备的高效反式钙钛矿太阳能电池[J]. 材料导报, 2022, 36(2): 21010190-6.
[14] 马秋菊, 童路, 汪丽莉, 宓一鸣, 赵新新. P2-NaxCoO2材料Ca掺杂性质的第一性原理研究[J]. 材料导报, 2022, 36(12): 21010083-6.
[15] 索鑫磊, 刘艳, 张立来, 苏杭, 李婉, 李国龙. 基于氧化石墨烯空穴传输层的平面异质结钙钛矿太阳能电池[J]. 材料导报, 2021, 35(6): 6015-6019.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed