Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 23040146-11    https://doi.org/10.11896/cldb.23040146
  电化学能源材料与器件 |
聚乙烯醇基凝胶电解质的制备及在储能器件中的应用
钮政, 罗希, 徐能能, 陈刚*, 乔锦丽*
东华大学环境科学与工程学院,上海 201600
Preparation of PVA Based Gel Polymer Electrolytes and Its Application in Energy Storage Devices
NIU Zheng, LUO Xi, XU Nengneng, CHEN Gang*, QIAO Jinli*
College of Environmental Science and Engineering, Donghua University, Shanghai 201600, China
下载:  全 文 ( PDF ) ( 54435KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于在电化学能源存贮与转化器件中所展现出的巨大潜在应用前景,固态聚合物电解质膜的开发受到研究界的广泛关注。基于柔性储能与转换器件的发展,以聚乙烯醇(Polyvinyl alcohol,PVA)为基体的凝胶聚合物电解质(Gel polymer electrolytes,GPEs)因亲水性强,无毒,良好的兼容性以及优异的化学稳定性,是当前研究较多的理想电解质材料。本文从PVA基水凝胶电解质的制备合成原理、方法和性能表征出发,总结和讨论了其基本物理特性和电化学性能,并就PVA基水凝胶电解质在超级电容器、柔性锌空电池、锂离子电池以及太阳能水热电池中的研究和应用进展进行了综述,并对其在该领域未来的发展做出展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钮政
罗希
徐能能
陈刚
乔锦丽
关键词:  聚乙烯醇  凝胶聚合物电解质  交联方式  柔性储能转化器件    
Abstract: Development of high-performance solid polymer electrolyte membranes (SPEMs) is a subject of intense research owing to its promising applications in electrochemical energy storage and conversion devices. Gel polymer electrolytes (GPEs) based on polyvinyl alcohol (PVA) are ideal electrolyte materials owing to their strong hydrophilicity, non-toxic, good compatibility and excellent chemical stability. In this paper, the preparation and synthesis of PVA based hydrogel electrolytes are summarized, and their basic physical properties and electrochemical properties are discussed. Specifically, the research progress of PVA based gel electrolytes in supercapacitors, flexible zinc air batteries, lithium-ion batteries and solar hydrothermal batteries is systematically reviewed, and their excellent electrochemical application potential is analyzed. At last, the future development of PVA based GPEs in this field is prospected.
Key words:  polyvinyl alcohol (PVA)    gel polymer electrolyte (GPE)    crosslinking method    flexible energy storage converter
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  TQ361.3  
基金资助: 国家自然科学基金(21972017);上海市“科技创新行动计划”港澳台合作项目(19160760600);上海市“科技创新行动计划”基础重点资助项目(19JC1410500)
通讯作者:  *陈刚,东华大学副教授、硕士研究生导师。东华大学与澳大利亚联邦科工组织水陆地部(CSIRO Land and Water)联合培养博士,先后在CSIRO Land and Water及新加坡国立大学从事废水处理、膜材料的制备及应用研究,研究方向主要集中于先进水处理与生物药用膜材料的制备及膜技术应用研究。近年来在正渗透、膜蒸馏及反渗透等膜技术处理废水开展了理论与基础研究,同时致力于解决实际工业废水膜处理过程中存在的问题,取得了一系列原创性研究成果。主持国家自然科学基金、上海市自然科学基金面上基金等项目,已在Water Research、Journal of Membrane Science、Desalination、Chemical Engineering Journal等期刊上发表论文20余篇。cheng@dhu.edu.cn
乔锦丽,东华大学教授,先进电化学能源学术带头人。获日本独立行政法人山口大学大学院物质工学(应用电化学)博士学位。随后于日本产业技术综合研究所(AIST)任研究员。长期专注于先进电化学能源存储和转换材料与器件,包括燃料电池、金属空气电池、CO2电化学还原等领域基础研究和应用研究。以第一/通信作者发表期刊论文230余篇,撰写/编著电化学能源系列英文专著6部/10章节,获日本/中国发明专利授权40余项。入选“全球前2%顶尖科学家榜单”(World’s Top 2% Scientists,终身科学影响力)。担任国际电化学能源科学院(IAOEES) 副主席兼理事,中国电化学会理事委员,中国硅酸盐学会固态离子分会理事委员,上海市汽车零部件行业协会院士专家服务中心首批“燃料电池产业专家”。先后主持国家面上/联合/重大前瞻项目,上海市基础重点、国际合作、港澳台合作项目以及国家重点研发计划政府间专项等。qiaojl@dhu.edu.cn   
作者简介:  钮政,2021年6月、2023年6月分别于西南科技大学和东华大学获得工学学士学位和硕士学位。现为东华大学环境科学与工程学院硕士研究生,在乔锦丽教授的指导下进行研究。目前主要研究领域为储能器件PVA基凝胶电解质膜材料。
引用本文:    
钮政, 罗希, 徐能能, 陈刚, 乔锦丽. 聚乙烯醇基凝胶电解质的制备及在储能器件中的应用[J]. 材料导报, 2024, 38(8): 23040146-11.
NIU Zheng, LUO Xi, XU Nengneng, CHEN Gang, QIAO Jinli. Preparation of PVA Based Gel Polymer Electrolytes and Its Application in Energy Storage Devices. Materials Reports, 2024, 38(8): 23040146-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23040146  或          https://www.mater-rep.com/CN/Y2024/V38/I8/23040146
1 Taneja N, Kumar A, Gupta P, et al. Journal of Energy Storage, 2022, 56(A), 105950.
2 Xu T, Liu K, Sheng N, et al. Energy Storage Materials, 2022, 48, 244.
3 Liu Y, Zhu Y, Cui Y. Nature Energy, 2019, 4(7), 540.
4 Li M, Wang C, Chen Z, et al. Chemical Reviews, 2020, 120(14), 6783.
5 Hashmi S A, Yadav N, Singh M K. Polymer Electrolytes for Supercapacitor and Challenges, WileyCH, UK, 2019, pp. 231.
6 He X, Zhang X. Journal of Energy Storage, 2022, 56(C), 106023.
7 Tie J, Rong L, Liu H, et al. Polymer Chemistry, 2020, 11(7), 1327.
8 Zhu M, Wu J, Wang Y, et al. Journal of Energy Chemistry, 2019, 37, 126.
9 Ren W, Ding C, Fu X, et al. Energy Storage Materials, 2021, 34, 515.
10 Wang Y, Chen F, Liu Z, et al. Angewandte Chemie International Edition, 2019, 58(44). 15707.
11 Huang S, Fang B, Song S Z, et al. Angewandte Chemie, 2019, 58(13). 4313.
12 Ge W, Cao S, Yang Y, et al. Chemical Engineering Journal, 2020, 408, 127306.
13 Kajiwara K, Osada Y. Gels handbook, Academic Press, New York, USA, 2000, pp. 4.
14 Chen B, Lyu Y B, Chen K Y, et al. High Voltage Engineering, 2019, 45(3), 929(in Chinese).
陈斌, 吕彦伯, 谌可炜, 等. 高电压技术, 2019, 45(3), 929.
15 Zhong C, Deng Y, Hu W, et al. Electrolytes for electrochemical supercapacitors, Taylor & Francis Ltd, UK, 2016.
16 Xs A, Zzab C, Cl A, et al. Journal of Alloys and Compounds, 2018, 739, 979.
17 Wang Z, Cheng J, Zhou J, et al. Nano Energy, 2018, 50, 106.
18 Gao C, Duan Y, Liu Y, et al. Journal of Power Sources, 2022, 541, 231658.
19 Li W, Cui Y. Solar Energy Materials and Solar Cells, 2023, 250, 112071.
20 Shen J, Dai Y, Xia F, et al. Sustainable Materials and Technologies, 2023, 36, e00586.
21 Abbasi A, Xu Y, Abouzari-lotf E, et al. Electrochimica Acta, 2022, 435, 141365.
22 Wang H, Wu J, Qiu J, et al. Sustainable Energy & Fuels, 2019, 3, 3109.
23 Hou B, Li X, Yan M, et al. European Polymer Journal, 2023, 185, 111826.
24 Peng Z, Wang C, Zhang Z, et al. Advanced Materials Interfaces, 2019, 6(23), 1901393.
25 Pellá M C G, Lima-Tenório M K, Tenório-Neto E T, et al. Carbohydrate Polymers, 2018, 196, 233.
26 Cao L, Yang M, Wu D, et al. Chem Commun, 2017, 53(10), 1615.
27 Xu Y, Zhang Y, Guo Z, et al. Angewandte Chemie(International ed in English), 2015, 54(51), 15390.
28 Yang C C, Lin S J. Journal of Power Sources, 2002, 112(2), 497.
29 Vatanpour V, Teber O O, Mehrabi M, et al. Materials Today Chemistry, 2023, 28, 101381.
30 Alipoori S, Mazinani S, Aboutalebi S H, et al. Journal of Energy Sto-rage, 2020, 27, 101072.
31 Rosi M, Iskandar F, Abdullah M, et al. International Journal of Electrochemical Science, 2014, 9(8), 4251.
32 Pita-López M L, Fletes-Vargas G, Espinosa-Andrews H, et al. European Polymer Journal, 2021, 145, 110176.
33 Adelnia H, Ensandoost R, Shebbrin M S, et al. European Polymer Journal, 2022, 164, 110974.
34 Hu X, Fan L, Qin G, et al. Journal of Power Sources, 2019, 414, 201.
35 Lu X, Chan C Y, Lee K I, et al. Journal of Materials Chemistry B, 2014, 2(43), 7631.
36 Sabzi M, Samadi N, Abbasi F, et al. Materials Science & Engineering C, 2017, 74, 374.
37 Abitbol T, Johnstone T, Quinn T M, et al. Soft Matter, 2011, 7(6), 2373.
38 Holloway J L, Lowman A M, Palmese G R. Soft Matter, 2013, 9(3), 826.
39 Gupta S, Pramanik A K, Kailath A, et al. Colloids Surfaces B:Biointerfaces, 2009, 74(1), 186.
40 Guo L, Ma W B, Wang Y, et al. Journal of Alloys and Compounds, 2020, 843, 155895.
41 Teramoto N, Saitoh M, Kuroiwa J, et al. Journal of Applied Polymer Science, 2001, 82(9), 2273.
42 Karaman B, Bozkurt A. International Journal of Hydrogen Energy, 2018, 43(12), 6229.
43 Wang K, Zhang X, Li C, et al. Advanced Materials, 2015, 27(45), 7451.
44 Zhang P, Wang K, Pei P, et al. Materials Today Chemistry, 2021, 21, 100538.
45 Chen G, Huang J, Gu J, et al. Journal of Materials Chemistry A, 2020, 8(14), 6776.
46 Batisse N, Raymundo-Piñero E. Journal of Power Sources, 2017, 348, 168.
47 Chodankar N R, Dubal D P, Lokhande A C, et al. Journal of Colloid and Interface Science, 2015, 460, 370.
48 Song Z, Ding J, Liu B, et al. Advanced Materials, 2020, 32(22), e1908127.
49 Ye D, Cheng Q, Zhang Q, et al. ACS Applied Materials & Interfaces, 2017, 9(49), 43154.
50 Mallakpour S, Abdolmaleki A, Khalesi Z, et al. Polymer, 2015, 81, 140.
51 Fan X, Liu J, Ding J, et al. Frontiers in Chemistry, 2019, 7, 678.
52 Fan X, Liu J, Song Z, et al. Nano Energy, 2019, 56, 454.
53 Qu S, Liu B, Fan X, et al. ChemistrySelect, 2020, 5(27), 8305.
54 Wu G M, Lin S J, Yang C C. Journal of Membrane Science, 2006, 280(1), 802.
55 Tan M J, Li B, Chee P, et al. Journal of Power Sources, 2018, 400, 566.
56 Yang C C, Lin S J. Journal of Power Sources, 2002, 112(2), 497.
57 Li H P, Xu Z X, Yang J, et al. Sustainable Energy & Fuels, 2020, 4, 5469.
58 Guo Y, Bae J, Zhao F, et al. Trends in Chemistry, 2019, 1(3), 335.
59 Lu K, Jiang T, Hu H, et al. Frontiers in Chemistry, 2020, 8, 546728.
60 Ma M, Yang J, Ye Z, et al. Macromolecular Materials and Engineering, 2021, 306(2), 2000577.
61 Zhang W, Chen S, Jiang W, et al. European Polymer Journal, 2023, 185, 111807.
62 Golabdar A, Adelnia H, Moshtzan N, et al. Polymer Composites, 2019, 40(4), 1322.
63 Abudabbus M M, Jevremović I, Janković A, et al. Composites Part B: Engineering, 2016, 104, 26.
64 Yu C, Tang X, Liu S, et al. International Journal of Biological Macromolecules, 2018, 117, 1.
65 Zhang P, Guo W, Guo Z H, et al. Advanced Materials, 2021, 33(31), 2101396.
66 Sun N, Lu F, Yu Y, et al. ACS Applied Materials & Interfaces, 2020, 12(10), 11778.
67 Wu S, Shao Z, Xie H, et al. Journal of Materials Chemistry A, 2021, 9(2), 1048.
68 Wei J, Wang Q. Small Methods, 2019, 3(11), 1900558.
69 Xu H, Liu Y, Xie X M. Chinese Chemical Letters, 2023, 34(4), 107470.
70 Kieltyka R E, Pape A C H, Albertazzi L, et al. Journal of the American Chemical Society, 2013, 135(30), 11159.
71 Wang K, Zhang X, Li C, et al. Advanced Materials, 2015, 27(45), 7451.
72 Zang L, Liu Q, Qiu J, et al. ACS Applied Materials & Interfaces, 2017, 9(39), 33941.
73 Jiang M, Zhu J, Chen C, et al. ACS Applied Materials & Interfaces, 2016, 8(5), 3473.
74 Gao H, Guo B, Jie S, et al. Advanced Energy Materials, 2015, 5(9), 1.
75 Zhitomirsky I, Petric A. Materials Science and Engineering B, 2000, 78(2-3), 125.
76 Liu Q, Qiu J, Yang C, et al. Advanced Materials Technologies, 2020, 6(1), 2000919.
77 Sun W, Yang J, Ji X, et al. Sustainable Materials and Technologies, 2022, 32, e00437.
78 Yang Y, Guan L, Li X, et al. ACS Applied Materials & Interfaces, 2018, 11(3), 3428.
79 Yang J, Hu X, Fang X, et al. Journal of Membrane Science, 2022, 650, 120386.
80 Jiao Q, Cao L, Zhao Z, et al. Biomacromolecules, 2021, 22(3), 1220.
81 Tran T N T, Clark M P, Xiong M, et al. Electrochimica Acta, 2020, 357, 136865.
82 Tran T N T, Chung H J, Ivey D G. Electrochimica Acta, 2019, 327, 135021.
83 Zhang B, Qin L, Fang Y, et al. Science Bulletin, 2022, 67(9), 955.
84 Dou H, Xu M, Zheng Y, et al. Advanced Materials, 2022, 34(18), 2110585.
85 Park J, Park M, Nam G, et al. Advanced Materials, 2015, 27(8), 1396.
86 Wang K, Pei P, Ma Z, et al. Journal of Materials Chemistry A, 2015, 3(45), 22648.
87 Zuo Y, Wang K, Pei P, et al. Materials Today Energy, 2021, 20, 100692.
88 Kim H W, Lim J M, Lee H J, et al. Journal of Materials Chemistry A, 2016, 4(10), 3711.
89 Li M, Liu B, Fan X, et al. ACS Applied Materials & Interfaces, 2019, 11(32), 28909.
90 Huang W, Zhao J. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 278(1), 246.
91 Chen C, Li Y, Yang P. Joule, 2021, 5(4), 737.
92 Li Y, Fan X Y, Liu X, et al. Journal of Materials Chemistry A, 2019, 7(44), 25449.
93 Zhou Y, Pan J, Ou X, et al. Advanced Energy Materials, 2021, 11(38), 2102047.
94 Bai C, Li X, Cui X, et al. Nano Energy, 2022, 100, 107449.
95 Hadad S, Hamrahjoo M, Dehghani E, et al. Sustainable Materials and Technologies, 2022, 33, e00503.
96 Xiang Y, Sun Z, Li J, et al. Ceramics International, 2017, 43(2), 2320.
97 Subburam G, Ramachandran K, El-khodary S A, et al. Chemical Engineering Journal, 2021, 415, 129012.
98 Liu S, Ban J, Shi H, et al. Chemical Engineering Journal, 2022, 431, 134283.
99 Ren W, Ding C, Fu X, et al. Energy Storage Materials, 2021, 34, 515.
100 Cheng X, Pan J, Zhao Y, et al. Advanced Energy Materials, 2018, 8(7), 1702184.
101 Zhu M, Wang Y, Long L, et al. Chemical Engineering Journal, 2019, 370, 1068.
102 Jamil R, Silvester D S. Current Opinion in Electrochemistry, 2022, 35, 101046.
[1] 唐言, 严娇, 王犁, 安鹏, 颜贵龙, 来婧娟, 李振宇, 周利华, 武元鹏. 羧甲基瓜尔胶/聚乙烯醇/聚丙烯酰胺形状记忆导电水凝胶的制备及性能研究[J]. 材料导报, 2025, 39(3): 23090015-7.
[2] 张亚玲, 程国君, 唐忠锋, 万祥龙, 丁国新, 王周锋. PVA基复合材料导热性能的研究进展[J]. 材料导报, 2024, 38(16): 23060217-10.
[3] 许梦媛, 刘让同, 李亮, 刘淑萍, 李淑静. 氯化铝交联双网络聚乙烯醇/角蛋白自愈合水凝胶[J]. 材料导报, 2023, 37(15): 22010257-6.
[4] 陈宇良, 张绍松, 徐金俊, 叶培欢, 姜锐. 压剪作用下PVA纤维再生混凝土力学性能试验研究[J]. 材料导报, 2023, 37(11): 21090102-7.
[5] 冯凯萍, 吕冰海, 王帅, 赵天晨, 周兆忠. SiC晶片金刚石磨料凝胶抛光盘的制备与性能分析[J]. 材料导报, 2022, 36(12): 21050197-9.
[6] 常洪雷, 曲明月, 刘伟, 陈繁育, 周鹏飞, 程梦莹, 刘健. 基于聚乙烯醇制备的自修复胶囊的性能评估[J]. 材料导报, 2021, 35(6): 6212-6218.
[7] 毛杰, 戴静波, 周俊慧, 张新波, 田宗明, 张斌, 秦永华. 聚乙烯醇/乙二醇/氧化石墨烯/聚苯胺导电复合物水凝胶的制备及性能研究[J]. 材料导报, 2021, 35(24): 24172-24176.
[8] 于海洋, 李地红, 代函函, 高群. 混杂纤维增强应变硬化水泥基复合材料的弯曲性能研究[J]. 材料导报, 2020, 34(Z1): 229-233.
[9] 陈雪微, 刘巍, 高洪达. 离子液体在不同溶剂中对PVB静电纺丝的影响[J]. 材料导报, 2020, 34(24): 24160-24164.
[10] 朱逸军, 刘子同, 袁久刚, 王强, 王平. 以巯基乙酸胆碱为共溶剂的角蛋白/PVA复合膜的一浴法制备及性能[J]. 材料导报, 2020, 34(14): 14187-14190.
[11] 马攀龙, 张忠厚, 韩琳, 陈荣源. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33(z1): 457-461.
[12] 王胜涛, 卢维尔, 王桐, 夏洋. PMMA/PVA双支撑膜辅助铜刻蚀法:一种改进的石墨烯转移技术[J]. 材料导报, 2019, 33(2): 230-233.
[13] 薛雅楠, 韩政学, 李爽然, 张佳宇, 张雪慧, 王兆伟, 贾瑞洁, 王艳芹, 武晓刚, 李晓娜, 陈维毅. 纳米材料掺杂型聚乙烯醇双交联复合水凝胶的力-化学性质[J]. 材料导报, 2019, 33(10): 1745-1751.
[14] 李婷婷, 闫梦雪, 吴宗翰, 姜茜, 林佳弘. 动态线性电极静电纺PVA纳米纤维的可纺性[J]. 材料导报, 2018, 32(24): 4363-4369.
[15] 何明,窦瑶,陈曼,尹国强,崔英德,陈循军. 羽毛角蛋白/PVA复合纳米纤维膜的制备及表征[J]. 《材料导报》期刊社, 2018, 32(2): 198-202.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed